一个用户友好的可穿戴的单通道eog为基础的人机界面光标控制

A. Ang, Zhiguo Zhang, Y. Hung, J. Mak
{"title":"一个用户友好的可穿戴的单通道eog为基础的人机界面光标控制","authors":"A. Ang, Zhiguo Zhang, Y. Hung, J. Mak","doi":"10.1109/NER.2015.7146685","DOIUrl":null,"url":null,"abstract":"This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or outdoor environment, and the average accuracy is 84.42% for indoor uses and 71.50% for outdoor uses. Compared with other existing EOG-based HCI systems, this system is highly user-friendly and does not require any training. Therefore, this system has the potential to provide an easy-to-use and cheap assistive technique for locked-in patients who have lost their main body muscular abilities but with proper eye-condition.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A user-friendly wearable single-channel EOG-based human-computer interface for cursor control\",\"authors\":\"A. Ang, Zhiguo Zhang, Y. Hung, J. Mak\",\"doi\":\"10.1109/NER.2015.7146685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or outdoor environment, and the average accuracy is 84.42% for indoor uses and 71.50% for outdoor uses. Compared with other existing EOG-based HCI systems, this system is highly user-friendly and does not require any training. Therefore, this system has the potential to provide an easy-to-use and cheap assistive technique for locked-in patients who have lost their main body muscular abilities but with proper eye-condition.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

提出了一种新颖的可穿戴单通道眼电仪人机界面,系统设计简单,性能稳定。在提出的系统中,用于控制的EOG信号是由双眼眨眼产生的,由商业可穿戴设备(NeuroSky MindWave耳机)收集,然后转换成一系列可以控制光标导航和动作的命令。基于eeg的光标控制系统在室内和室外环境下对8名被试进行了测试,室内平均准确率为84.42%,室外平均准确率为71.50%。与现有的其他基于eog的HCI系统相比,该系统具有高度的用户友好性,并且不需要任何培训。因此,该系统有可能为失去主要身体肌肉能力但视力正常的闭锁患者提供一种易于使用且廉价的辅助技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A user-friendly wearable single-channel EOG-based human-computer interface for cursor control
This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or outdoor environment, and the average accuracy is 84.42% for indoor uses and 71.50% for outdoor uses. Compared with other existing EOG-based HCI systems, this system is highly user-friendly and does not require any training. Therefore, this system has the potential to provide an easy-to-use and cheap assistive technique for locked-in patients who have lost their main body muscular abilities but with proper eye-condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信