{"title":"一种新的双向进化结构优化算法","authors":"Xiaodong Huang, Y. Xie, M. Burry","doi":"10.1299/JSMEC.49.1091","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm for bi-directional evolutionary structural optimization (BESO) is proposed. In the new BESO method, the adding and removing of material is controlled by a single parameter, i.e. the removal ratio of volume (or weight). The convergence of the iteration is determined by a performance index of the structure. It is found that the new BESO algorithm has many advantages over existing ESO and BESO methods in terms of efficiency and robustness. Several 2D and 3D examples of stiffness optimization problems are presented and discussed.","PeriodicalId":151961,"journal":{"name":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"A new algorithm for bi-directional evolutionary structural optimization\",\"authors\":\"Xiaodong Huang, Y. Xie, M. Burry\",\"doi\":\"10.1299/JSMEC.49.1091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new algorithm for bi-directional evolutionary structural optimization (BESO) is proposed. In the new BESO method, the adding and removing of material is controlled by a single parameter, i.e. the removal ratio of volume (or weight). The convergence of the iteration is determined by a performance index of the structure. It is found that the new BESO algorithm has many advantages over existing ESO and BESO methods in terms of efficiency and robustness. Several 2D and 3D examples of stiffness optimization problems are presented and discussed.\",\"PeriodicalId\":151961,\"journal\":{\"name\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEC.49.1091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEC.49.1091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new algorithm for bi-directional evolutionary structural optimization
In this paper, a new algorithm for bi-directional evolutionary structural optimization (BESO) is proposed. In the new BESO method, the adding and removing of material is controlled by a single parameter, i.e. the removal ratio of volume (or weight). The convergence of the iteration is determined by a performance index of the structure. It is found that the new BESO algorithm has many advantages over existing ESO and BESO methods in terms of efficiency and robustness. Several 2D and 3D examples of stiffness optimization problems are presented and discussed.