DFIG风能系统基于ga的LQR与传统LQR控制方法的比较

Ravi Bhushan, K. Chatterjee, R. Shankar
{"title":"DFIG风能系统基于ga的LQR与传统LQR控制方法的比较","authors":"Ravi Bhushan, K. Chatterjee, R. Shankar","doi":"10.1109/RAIT.2016.7507904","DOIUrl":null,"url":null,"abstract":"This work addresses an application of genetic algorithm (GA) methodology in doubly-fed induction generator (DFIG) systems to optimize the weighting matrices of the linear quadratic regulator (LQR). The GA-based LQR control technique will elude the trial-and-error approach in constructing the appropriate weighting matrices. The proposed controller is compared with the conventional LQR control method for the stator terminal voltage perturbations. The stability and the dynamic responses of the studied system are examined through eigenvalues and the time response analysis. Simulation results demonstrate that the GA-based LQR control methodology is more stable and robust than in comparison to the conventional LQR control method.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Comparison between GA-based LQR and conventional LQR control method of DFIG wind energy system\",\"authors\":\"Ravi Bhushan, K. Chatterjee, R. Shankar\",\"doi\":\"10.1109/RAIT.2016.7507904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses an application of genetic algorithm (GA) methodology in doubly-fed induction generator (DFIG) systems to optimize the weighting matrices of the linear quadratic regulator (LQR). The GA-based LQR control technique will elude the trial-and-error approach in constructing the appropriate weighting matrices. The proposed controller is compared with the conventional LQR control method for the stator terminal voltage perturbations. The stability and the dynamic responses of the studied system are examined through eigenvalues and the time response analysis. Simulation results demonstrate that the GA-based LQR control methodology is more stable and robust than in comparison to the conventional LQR control method.\",\"PeriodicalId\":289216,\"journal\":{\"name\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAIT.2016.7507904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

这项工作解决了遗传算法(GA)方法在双馈感应发电机(DFIG)系统中的应用,以优化线性二次型调节器(LQR)的权重矩阵。基于遗传算法的LQR控制技术将避免在构建适当的加权矩阵时采用试错方法。针对定子端电压扰动,将所提出的控制器与传统的LQR控制方法进行了比较。通过特征值分析和时间响应分析,验证了系统的稳定性和动力响应。仿真结果表明,与传统的LQR控制方法相比,基于遗传算法的LQR控制方法具有更强的鲁棒性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between GA-based LQR and conventional LQR control method of DFIG wind energy system
This work addresses an application of genetic algorithm (GA) methodology in doubly-fed induction generator (DFIG) systems to optimize the weighting matrices of the linear quadratic regulator (LQR). The GA-based LQR control technique will elude the trial-and-error approach in constructing the appropriate weighting matrices. The proposed controller is compared with the conventional LQR control method for the stator terminal voltage perturbations. The stability and the dynamic responses of the studied system are examined through eigenvalues and the time response analysis. Simulation results demonstrate that the GA-based LQR control methodology is more stable and robust than in comparison to the conventional LQR control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信