浏览器中的随机森林

Pratheek B R, Chandradhar Rao, Darshan Madesh, Anudeep Cvs, Mamatha H R
{"title":"浏览器中的随机森林","authors":"Pratheek B R, Chandradhar Rao, Darshan Madesh, Anudeep Cvs, Mamatha H R","doi":"10.1145/3594441.3594477","DOIUrl":null,"url":null,"abstract":"This paper introduces rFITb, a distributed computing platform that enables the execution of computationally intensive random forest jobs on personal devices such as smartphones and personal computers. The platform leverages the increased computational capacity of personal devices to distribute and execute jobs globally, providing an efficient alternative to cloud-based services. The paper describes rFITb's architecture and design optimizations, along with a comparative evaluation of its performance against Python's sklearn ensemble random forest classifier on various datasets. The results show that rFITb outperforms the sklearn classifier in terms of model time, while also providing a mechanism for managing failure-prone volunteers.","PeriodicalId":247919,"journal":{"name":"Proceedings of the 2023 8th International Conference on Information and Education Innovations","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rFITb: Random Forest in the Browser\",\"authors\":\"Pratheek B R, Chandradhar Rao, Darshan Madesh, Anudeep Cvs, Mamatha H R\",\"doi\":\"10.1145/3594441.3594477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces rFITb, a distributed computing platform that enables the execution of computationally intensive random forest jobs on personal devices such as smartphones and personal computers. The platform leverages the increased computational capacity of personal devices to distribute and execute jobs globally, providing an efficient alternative to cloud-based services. The paper describes rFITb's architecture and design optimizations, along with a comparative evaluation of its performance against Python's sklearn ensemble random forest classifier on various datasets. The results show that rFITb outperforms the sklearn classifier in terms of model time, while also providing a mechanism for managing failure-prone volunteers.\",\"PeriodicalId\":247919,\"journal\":{\"name\":\"Proceedings of the 2023 8th International Conference on Information and Education Innovations\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 8th International Conference on Information and Education Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3594441.3594477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 8th International Conference on Information and Education Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594441.3594477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了rFITb,它是一个分布式计算平台,可以在智能手机和个人计算机等个人设备上执行计算密集型随机森林作业。该平台利用个人设备增加的计算能力在全球范围内分发和执行作业,为基于云的服务提供了一种高效的替代方案。本文描述了rFITb的架构和设计优化,并对其在各种数据集上与Python的sklearn集成随机森林分类器的性能进行了比较评估。结果表明,rFITb在模型时间方面优于sklearn分类器,同时也提供了一种管理容易失败的志愿者的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
rFITb: Random Forest in the Browser
This paper introduces rFITb, a distributed computing platform that enables the execution of computationally intensive random forest jobs on personal devices such as smartphones and personal computers. The platform leverages the increased computational capacity of personal devices to distribute and execute jobs globally, providing an efficient alternative to cloud-based services. The paper describes rFITb's architecture and design optimizations, along with a comparative evaluation of its performance against Python's sklearn ensemble random forest classifier on various datasets. The results show that rFITb outperforms the sklearn classifier in terms of model time, while also providing a mechanism for managing failure-prone volunteers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信