一种新的基于显著性的视觉注意特征融合技术

Z. Armanfard, H. Bahmani, A. Nasrabadi
{"title":"一种新的基于显著性的视觉注意特征融合技术","authors":"Z. Armanfard, H. Bahmani, A. Nasrabadi","doi":"10.1109/ACTEA.2009.5227866","DOIUrl":null,"url":null,"abstract":"In this paper we proposed a novel feature fusion technique in Saliency-Based Visual Attention Model, presented in [Itti, 1998]. There are three conspicuity maps in Saliency-Based Visual Attention Model, which are linearly combined from 12 color maps, 6 intensity maps and 24 orientation maps (42 Feature maps overall) through an Across-scale combination and normalization. We utilized the genetic algorithm approach to combine all 42 Feature maps that are mentioned in this basic Saliency-Based Visual Attention Model. We proposed a “Weighted Feature Summation” to form a saliency map, with optimum weights which are determined by the genetic algorithm. The experimental results show the effectiveness of our proposed method to improve the detection speed of a favorite object in the scene.","PeriodicalId":308909,"journal":{"name":"2009 International Conference on Advances in Computational Tools for Engineering Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel feature fusion technique in Saliency-Based Visual Attention\",\"authors\":\"Z. Armanfard, H. Bahmani, A. Nasrabadi\",\"doi\":\"10.1109/ACTEA.2009.5227866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we proposed a novel feature fusion technique in Saliency-Based Visual Attention Model, presented in [Itti, 1998]. There are three conspicuity maps in Saliency-Based Visual Attention Model, which are linearly combined from 12 color maps, 6 intensity maps and 24 orientation maps (42 Feature maps overall) through an Across-scale combination and normalization. We utilized the genetic algorithm approach to combine all 42 Feature maps that are mentioned in this basic Saliency-Based Visual Attention Model. We proposed a “Weighted Feature Summation” to form a saliency map, with optimum weights which are determined by the genetic algorithm. The experimental results show the effectiveness of our proposed method to improve the detection speed of a favorite object in the scene.\",\"PeriodicalId\":308909,\"journal\":{\"name\":\"2009 International Conference on Advances in Computational Tools for Engineering Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Advances in Computational Tools for Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACTEA.2009.5227866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Computational Tools for Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2009.5227866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的基于显著性的视觉注意模型的特征融合技术,该模型在[Itti, 1998]中提出。基于显著性的视觉注意模型有3个显著性图,由12个颜色图、6个强度图和24个方向图(共42个特征图)通过跨尺度组合和归一化线性组合而成。我们利用遗传算法方法将这个基于显著性的基本视觉注意模型中提到的所有42个特征映射结合起来。我们提出了“加权特征求和”来形成显著性图,并通过遗传算法确定最优权重。实验结果表明,该方法能够有效地提高场景中喜爱物体的检测速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel feature fusion technique in Saliency-Based Visual Attention
In this paper we proposed a novel feature fusion technique in Saliency-Based Visual Attention Model, presented in [Itti, 1998]. There are three conspicuity maps in Saliency-Based Visual Attention Model, which are linearly combined from 12 color maps, 6 intensity maps and 24 orientation maps (42 Feature maps overall) through an Across-scale combination and normalization. We utilized the genetic algorithm approach to combine all 42 Feature maps that are mentioned in this basic Saliency-Based Visual Attention Model. We proposed a “Weighted Feature Summation” to form a saliency map, with optimum weights which are determined by the genetic algorithm. The experimental results show the effectiveness of our proposed method to improve the detection speed of a favorite object in the scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信