{"title":"格列吡嗪药物氯阴离子结合特性的研究","authors":"Serap Mert","doi":"10.54287/gujsa.1281246","DOIUrl":null,"url":null,"abstract":"This study addresses the anion binding property of Glipizide (GLP), an oral antidiabetic a second-generation drug member of the sulphonylurea (SU) family. GLP effectively interacts with Cl- anion according to 1H-NMR spectroscopic titrations of successive tetrabutylammonium chloride (TBACl) in deuterated chloroform (CDCl3) and dimethyl sulfoxide (d6-DMSO). Upon the addition of TBACl, the change in chemical shift was observed for both N-H protons of SU in CDCl3, whereas it causes a difference in the shift of only one of N-H proton in SU in d6-DMSO. In addition, the data obtained from 1H-NMR spectroscopic titrations was analyzed by DynaFit program to calculate the binding constant (Ka) value between GLP and Cl- anion. It was found that GLP binds Cl- anion in CDCl3 with higher affinity (Ka=77.37 M-1, Fitplot for N-Hh proton at δ=6.47 ppm) than in d6-DMSO (Ka=38.53 M-1, Fitplot for N-Hh proton at δ=6.32 ppm).","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"10 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Chloride Anion Binding Properties of Glipizide Drug\",\"authors\":\"Serap Mert\",\"doi\":\"10.54287/gujsa.1281246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the anion binding property of Glipizide (GLP), an oral antidiabetic a second-generation drug member of the sulphonylurea (SU) family. GLP effectively interacts with Cl- anion according to 1H-NMR spectroscopic titrations of successive tetrabutylammonium chloride (TBACl) in deuterated chloroform (CDCl3) and dimethyl sulfoxide (d6-DMSO). Upon the addition of TBACl, the change in chemical shift was observed for both N-H protons of SU in CDCl3, whereas it causes a difference in the shift of only one of N-H proton in SU in d6-DMSO. In addition, the data obtained from 1H-NMR spectroscopic titrations was analyzed by DynaFit program to calculate the binding constant (Ka) value between GLP and Cl- anion. It was found that GLP binds Cl- anion in CDCl3 with higher affinity (Ka=77.37 M-1, Fitplot for N-Hh proton at δ=6.47 ppm) than in d6-DMSO (Ka=38.53 M-1, Fitplot for N-Hh proton at δ=6.32 ppm).\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"10 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1281246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1281246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Chloride Anion Binding Properties of Glipizide Drug
This study addresses the anion binding property of Glipizide (GLP), an oral antidiabetic a second-generation drug member of the sulphonylurea (SU) family. GLP effectively interacts with Cl- anion according to 1H-NMR spectroscopic titrations of successive tetrabutylammonium chloride (TBACl) in deuterated chloroform (CDCl3) and dimethyl sulfoxide (d6-DMSO). Upon the addition of TBACl, the change in chemical shift was observed for both N-H protons of SU in CDCl3, whereas it causes a difference in the shift of only one of N-H proton in SU in d6-DMSO. In addition, the data obtained from 1H-NMR spectroscopic titrations was analyzed by DynaFit program to calculate the binding constant (Ka) value between GLP and Cl- anion. It was found that GLP binds Cl- anion in CDCl3 with higher affinity (Ka=77.37 M-1, Fitplot for N-Hh proton at δ=6.47 ppm) than in d6-DMSO (Ka=38.53 M-1, Fitplot for N-Hh proton at δ=6.32 ppm).