状态依赖模式转换概率

Martin Michaelis, F. Govaers, W. Koch
{"title":"状态依赖模式转换概率","authors":"Martin Michaelis, F. Govaers, W. Koch","doi":"10.1109/SDF.2013.6698262","DOIUrl":null,"url":null,"abstract":"A multiple model filter similar to the IMM filter is developed for tracking of maneuvering targets. The mode transition probabilities are modeled as dependent on the state. This allows using information about the mode of a target that is contained in the state. Thus, better estimates of the mode can be obtained. Convergence of the mode estimates occurs more quickly. As an application, choosing acceleration dependent mode transitions in a scenario using constant velocity motion and coordinated turn motion is discussed.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"36 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"State dependent mode transition probabilities\",\"authors\":\"Martin Michaelis, F. Govaers, W. Koch\",\"doi\":\"10.1109/SDF.2013.6698262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiple model filter similar to the IMM filter is developed for tracking of maneuvering targets. The mode transition probabilities are modeled as dependent on the state. This allows using information about the mode of a target that is contained in the state. Thus, better estimates of the mode can be obtained. Convergence of the mode estimates occurs more quickly. As an application, choosing acceleration dependent mode transitions in a scenario using constant velocity motion and coordinated turn motion is discussed.\",\"PeriodicalId\":228075,\"journal\":{\"name\":\"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"36 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2013.6698262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对机动目标的跟踪问题,提出了一种类似于IMM滤波器的多模型滤波器。模式转移概率被建模为依赖于状态。这允许使用状态中包含的关于目标模式的信息。因此,可以得到更好的模态估计。模态估计的收敛速度更快。作为应用,讨论了匀速运动和协调转弯运动场景下加速度依赖模式转换的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State dependent mode transition probabilities
A multiple model filter similar to the IMM filter is developed for tracking of maneuvering targets. The mode transition probabilities are modeled as dependent on the state. This allows using information about the mode of a target that is contained in the state. Thus, better estimates of the mode can be obtained. Convergence of the mode estimates occurs more quickly. As an application, choosing acceleration dependent mode transitions in a scenario using constant velocity motion and coordinated turn motion is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信