Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu
{"title":"粗粒度可重构体系结构指令码的自适应压缩","authors":"Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu","doi":"10.1109/FPT.2013.6718396","DOIUrl":null,"url":null,"abstract":"Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive compression for instruction code of Coarse Grained Reconfigurable Architectures\",\"authors\":\"Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu\",\"doi\":\"10.1109/FPT.2013.6718396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive compression for instruction code of Coarse Grained Reconfigurable Architectures
Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.