机器人系统数据驱动控制的局部Koopman算子

Giorgos Mamakoukas, Maria L. Castaño, Xiaobo Tan, T. Murphey
{"title":"机器人系统数据驱动控制的局部Koopman算子","authors":"Giorgos Mamakoukas, Maria L. Castaño, Xiaobo Tan, T. Murphey","doi":"10.15607/RSS.2019.XV.054","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopmanbased LQR control.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Local Koopman Operators for Data-Driven Control of Robotic Systems\",\"authors\":\"Giorgos Mamakoukas, Maria L. Castaño, Xiaobo Tan, T. Murphey\",\"doi\":\"10.15607/RSS.2019.XV.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopmanbased LQR control.\",\"PeriodicalId\":307591,\"journal\":{\"name\":\"Robotics: Science and Systems XV\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2019.XV.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文提出了一种非线性系统线性嵌入的数据驱动方法。利用一般非线性动力学的结构知识,作者利用Koopman算子开发了一种系统的,数据驱动的方法,用于根据潜在非线性动力学的高阶导数构建线性表示。在线性表示下,非线性系统用LQR反馈策略进行控制,其增益只需计算一次。因此,该方法可以实现快速的控制合成。我们通过对尾驱动机器鱼的建模和控制的仿真和实验结果证明了该方法的有效性,并表明所提出的策略与后退控制相当。据我们所知,这是基于koopmann的LQR控制的第一个实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Koopman Operators for Data-Driven Control of Robotic Systems
This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopmanbased LQR control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信