基于LSSVM预测PSNR的CT图像编码

Zixin Lin, Xin-Yu Jin, Changhao Zhao
{"title":"基于LSSVM预测PSNR的CT图像编码","authors":"Zixin Lin, Xin-Yu Jin, Changhao Zhao","doi":"10.1109/ITA.2013.18","DOIUrl":null,"url":null,"abstract":"With the development of remote telemedicine, the research of medical image compression with limited band is very important. In this paper, we analyze the features of kidney CT image and build LSSVM model to predict PSNR of ROI(Region of Interest) and BR(Background Region) of CT image. Then we propose a new method of encoding of CT image by predicting PSNR based on LSSVM, which has lower computational complexity and improves about 1/3 in encoding efficiency compared to the ROI encoding algorithm based on ISA-DWT. Besides, it can also achieve the effect of balancing ROI and BR as ISA-DWT algorithm.","PeriodicalId":285687,"journal":{"name":"2013 International Conference on Information Technology and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Encoding of CT Image by Predicting PSNR Based on LSSVM\",\"authors\":\"Zixin Lin, Xin-Yu Jin, Changhao Zhao\",\"doi\":\"10.1109/ITA.2013.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of remote telemedicine, the research of medical image compression with limited band is very important. In this paper, we analyze the features of kidney CT image and build LSSVM model to predict PSNR of ROI(Region of Interest) and BR(Background Region) of CT image. Then we propose a new method of encoding of CT image by predicting PSNR based on LSSVM, which has lower computational complexity and improves about 1/3 in encoding efficiency compared to the ROI encoding algorithm based on ISA-DWT. Besides, it can also achieve the effect of balancing ROI and BR as ISA-DWT algorithm.\",\"PeriodicalId\":285687,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2013.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着远程医疗的发展,有限频带医学图像压缩技术的研究显得尤为重要。本文通过分析肾脏CT图像的特征,建立LSSVM模型来预测CT图像感兴趣区域(ROI)和背景区域(BR)的PSNR。然后,我们提出了一种基于LSSVM的预测PSNR的CT图像编码新方法,与基于ISA-DWT的ROI编码算法相比,该方法的计算复杂度更低,编码效率提高了约1/3。此外,它还可以达到像ISA-DWT算法那样平衡ROI和BR的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding of CT Image by Predicting PSNR Based on LSSVM
With the development of remote telemedicine, the research of medical image compression with limited band is very important. In this paper, we analyze the features of kidney CT image and build LSSVM model to predict PSNR of ROI(Region of Interest) and BR(Background Region) of CT image. Then we propose a new method of encoding of CT image by predicting PSNR based on LSSVM, which has lower computational complexity and improves about 1/3 in encoding efficiency compared to the ROI encoding algorithm based on ISA-DWT. Besides, it can also achieve the effect of balancing ROI and BR as ISA-DWT algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信