基于开关电容的低功耗语音关键字模拟特征提取器的设计与实现

Feifei Chen, Ka-Fai Un, Wei-Han Yu, Pui-in Mak, R. Martins
{"title":"基于开关电容的低功耗语音关键字模拟特征提取器的设计与实现","authors":"Feifei Chen, Ka-Fai Un, Wei-Han Yu, Pui-in Mak, R. Martins","doi":"10.1109/APCCAS55924.2022.10090360","DOIUrl":null,"url":null,"abstract":"A low-power keyword spotting (KWS) is demanding for the smart human-device interface. The conventional analog feature extractor utilizes an analog filter bank that consumes large power and area. This paper presents a KWS with a low-power switched-capacitor-based feature extractor. The feature extractor employs two pipelining time-domain convolutional neural networks (TD-CNNs) to extract sufficient features for KWS. The TD-CNNs utilize sparsity aware computation (SAC) and sparsified quantization (SQ) for a 4-bit weight quantization. The features are quantized to 2-bit for further classification by an off-chip deep neural network. The analog feature extractor is designed in a 55-nm CMOS process and post-layout simulation is provided. It consumes 4.4 µW at a 1.2-V power supply, with an area of 0.39 mm2. It achieves an accuracy of 92.2% for the google command dataset (GSCD) with five classes.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of a Low Power Switched-Capacitor-Based Analog Feature Extractor for Voice Keyword Spotting\",\"authors\":\"Feifei Chen, Ka-Fai Un, Wei-Han Yu, Pui-in Mak, R. Martins\",\"doi\":\"10.1109/APCCAS55924.2022.10090360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-power keyword spotting (KWS) is demanding for the smart human-device interface. The conventional analog feature extractor utilizes an analog filter bank that consumes large power and area. This paper presents a KWS with a low-power switched-capacitor-based feature extractor. The feature extractor employs two pipelining time-domain convolutional neural networks (TD-CNNs) to extract sufficient features for KWS. The TD-CNNs utilize sparsity aware computation (SAC) and sparsified quantization (SQ) for a 4-bit weight quantization. The features are quantized to 2-bit for further classification by an off-chip deep neural network. The analog feature extractor is designed in a 55-nm CMOS process and post-layout simulation is provided. It consumes 4.4 µW at a 1.2-V power supply, with an area of 0.39 mm2. It achieves an accuracy of 92.2% for the google command dataset (GSCD) with five classes.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低功耗关键字识别(KWS)对智能人机界面提出了更高的要求。传统的模拟特征提取器采用模拟滤波器组,功耗大、面积大。本文提出了一种基于低功耗开关电容的特征提取器的KWS。特征提取器采用两个流水线时域卷积神经网络(td - cnn)来提取足够的KWS特征。td - cnn利用稀疏感知计算(SAC)和稀疏量化(SQ)实现4位权重量化。这些特征被量化为2位,以便通过片外深度神经网络进行进一步分类。模拟特征提取器采用55纳米CMOS工艺设计,并进行了布局后仿真。在1.2 v电源下,功耗为4.4 μ W,面积为0.39 mm2。对于5个类的google命令数据集(GSCD),它达到了92.2%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of a Low Power Switched-Capacitor-Based Analog Feature Extractor for Voice Keyword Spotting
A low-power keyword spotting (KWS) is demanding for the smart human-device interface. The conventional analog feature extractor utilizes an analog filter bank that consumes large power and area. This paper presents a KWS with a low-power switched-capacitor-based feature extractor. The feature extractor employs two pipelining time-domain convolutional neural networks (TD-CNNs) to extract sufficient features for KWS. The TD-CNNs utilize sparsity aware computation (SAC) and sparsified quantization (SQ) for a 4-bit weight quantization. The features are quantized to 2-bit for further classification by an off-chip deep neural network. The analog feature extractor is designed in a 55-nm CMOS process and post-layout simulation is provided. It consumes 4.4 µW at a 1.2-V power supply, with an area of 0.39 mm2. It achieves an accuracy of 92.2% for the google command dataset (GSCD) with five classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信