自制微间隙生物传感器对糖浓度的定量测定

B. S. Rao, M. Nurfaiz, U. Hashim
{"title":"自制微间隙生物传感器对糖浓度的定量测定","authors":"B. S. Rao, M. Nurfaiz, U. Hashim","doi":"10.1109/RSM.2013.6706471","DOIUrl":null,"url":null,"abstract":"Sugar is carbohydrate sweet-flavoured substance that composed of carbon, oxygen and hydrogen. It is an important component to provide sweet taste in food. Besides, it also provides immediate energy to complete daily routine life. However, uncontrolled amount of sugar can lead to serious health complications and diseases such as Hypoglycemia (low sugar in blood), syndrome X, diabetes and heart disease. Low amount of sugar in bloodstream may cause nausea and dizziness. Besides that, it also can be used as sensor to detect the amount of sugar in beverages. Here, sugar is used as a reference measurement to test the functionality of the device before testing it in real life using glucose samples. In future, real urine samples will be used to measure concentration of glucose in diabetic patients. In this paper, sugar concentration measurement based on microgap biosensor is fabricated by using conventional photolithography process. Silicon was used as the substrate material and followed by layers of Silicon dioxide (SiO2), Polysilicon, Titanium (Ti) and Gold (Au). Chrome mask were used to transfer pattern of microgap and contact pads onto the silicon substrate. The device design has been optimised to achieve few performance factors that includes accuracy, sensitivity, response time and fabrication cost. A number of sugar concentrations were prepared by diluting it with DI water for measurement process by electrical characterization. In this work, studies and analysis were conducted based on different concentration of sugar on constant sized microgap and based on different size of microgap structure on constant sugar concentration. As the result, the experiment has been successfully yielded a high sensitive microgap sensor and the lowest detected sugar concentration sample is 0.0245gml-1. This method of biosensing provides a very simple and promising detection technique for any kind of biomolecules that includes proteins, DNA, enzymes, antibody and antigen.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantitative measurement of sugar concentration using in house fabricated microgap biosensor\",\"authors\":\"B. S. Rao, M. Nurfaiz, U. Hashim\",\"doi\":\"10.1109/RSM.2013.6706471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugar is carbohydrate sweet-flavoured substance that composed of carbon, oxygen and hydrogen. It is an important component to provide sweet taste in food. Besides, it also provides immediate energy to complete daily routine life. However, uncontrolled amount of sugar can lead to serious health complications and diseases such as Hypoglycemia (low sugar in blood), syndrome X, diabetes and heart disease. Low amount of sugar in bloodstream may cause nausea and dizziness. Besides that, it also can be used as sensor to detect the amount of sugar in beverages. Here, sugar is used as a reference measurement to test the functionality of the device before testing it in real life using glucose samples. In future, real urine samples will be used to measure concentration of glucose in diabetic patients. In this paper, sugar concentration measurement based on microgap biosensor is fabricated by using conventional photolithography process. Silicon was used as the substrate material and followed by layers of Silicon dioxide (SiO2), Polysilicon, Titanium (Ti) and Gold (Au). Chrome mask were used to transfer pattern of microgap and contact pads onto the silicon substrate. The device design has been optimised to achieve few performance factors that includes accuracy, sensitivity, response time and fabrication cost. A number of sugar concentrations were prepared by diluting it with DI water for measurement process by electrical characterization. In this work, studies and analysis were conducted based on different concentration of sugar on constant sized microgap and based on different size of microgap structure on constant sugar concentration. As the result, the experiment has been successfully yielded a high sensitive microgap sensor and the lowest detected sugar concentration sample is 0.0245gml-1. This method of biosensing provides a very simple and promising detection technique for any kind of biomolecules that includes proteins, DNA, enzymes, antibody and antigen.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

糖是由碳、氧和氢组成的碳水化合物甜味物质。它是食物中提供甜味的重要成分。此外,它还为完成日常生活提供了直接的能量。然而,不受控制的糖量会导致严重的健康并发症和疾病,如低血糖症(低血糖)、X综合征、糖尿病和心脏病。血液中含糖量过低会引起恶心和头晕。此外,它还可以作为传感器来检测饮料中的含糖量。在这里,糖被用作参考测量来测试设备的功能,然后在现实生活中使用葡萄糖样本进行测试。未来,真实的尿液样本将被用于测量糖尿病患者的葡萄糖浓度。本文采用传统光刻工艺制备了基于微间隙生物传感器的糖浓度测量方法。采用硅作为衬底材料,然后是二氧化硅(SiO2)、多晶硅、钛(Ti)和金(Au)层。采用镀铬掩模将微隙和接触片的图案转移到硅衬底上。该器件设计经过优化,实现了精度、灵敏度、响应时间和制造成本等少数性能因素。用去离子水稀释制备了若干糖浓度,用于电表征的测量过程。在本工作中,分别对不同糖浓度对定尺寸微间隙的影响和不同糖浓度对定尺寸微间隙结构的影响进行了研究和分析。实验成功制备了高灵敏度的微间隙传感器,最低检测糖浓度样品为0.0245gml-1。这种生物传感方法为包括蛋白质、DNA、酶、抗体和抗原在内的任何种类的生物分子提供了一种非常简单和有前途的检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative measurement of sugar concentration using in house fabricated microgap biosensor
Sugar is carbohydrate sweet-flavoured substance that composed of carbon, oxygen and hydrogen. It is an important component to provide sweet taste in food. Besides, it also provides immediate energy to complete daily routine life. However, uncontrolled amount of sugar can lead to serious health complications and diseases such as Hypoglycemia (low sugar in blood), syndrome X, diabetes and heart disease. Low amount of sugar in bloodstream may cause nausea and dizziness. Besides that, it also can be used as sensor to detect the amount of sugar in beverages. Here, sugar is used as a reference measurement to test the functionality of the device before testing it in real life using glucose samples. In future, real urine samples will be used to measure concentration of glucose in diabetic patients. In this paper, sugar concentration measurement based on microgap biosensor is fabricated by using conventional photolithography process. Silicon was used as the substrate material and followed by layers of Silicon dioxide (SiO2), Polysilicon, Titanium (Ti) and Gold (Au). Chrome mask were used to transfer pattern of microgap and contact pads onto the silicon substrate. The device design has been optimised to achieve few performance factors that includes accuracy, sensitivity, response time and fabrication cost. A number of sugar concentrations were prepared by diluting it with DI water for measurement process by electrical characterization. In this work, studies and analysis were conducted based on different concentration of sugar on constant sized microgap and based on different size of microgap structure on constant sugar concentration. As the result, the experiment has been successfully yielded a high sensitive microgap sensor and the lowest detected sugar concentration sample is 0.0245gml-1. This method of biosensing provides a very simple and promising detection technique for any kind of biomolecules that includes proteins, DNA, enzymes, antibody and antigen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信