水生系统水质恶化

Viera Kováčová
{"title":"水生系统水质恶化","authors":"Viera Kováčová","doi":"10.31577/ahs-2023-0024.01.0016","DOIUrl":null,"url":null,"abstract":"The need to reduce anthropogenic pollutants inputs to aquatic ecosystems in order to protect drinking-water supplies and to reduce eutrophication, including the proliferation of harmful algal blooms. Nitrogen (N), needed for protein synthesis, and phosphorus (P), needed for DNA, RNA, and energy transfer, are both required to support aquatic plant growth and are the key limiting nutrients in most aquatic and terrestrial ecosystems. Most researchers have concluded that no single factor is responsible, but rather interactions between two or more factors control the rates. River aquatic systems that have been heavily loaded with nutrients can display P limitation, N limitation, and colimitation, and what nutrient is most limiting can change both seasonally and spatial. At the transition between fresh and saline water, P can often be the limiting nutrient. P and dissolved silicate are also often limiting during the spring, with N limitation commonly occurring during summer months. Algal production during summer is supported by rapidly recycled P within the water column or released from sediments.","PeriodicalId":321483,"journal":{"name":"Acta Hydrologica Slovaca","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deterioration of water quality in aquatic system\",\"authors\":\"Viera Kováčová\",\"doi\":\"10.31577/ahs-2023-0024.01.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to reduce anthropogenic pollutants inputs to aquatic ecosystems in order to protect drinking-water supplies and to reduce eutrophication, including the proliferation of harmful algal blooms. Nitrogen (N), needed for protein synthesis, and phosphorus (P), needed for DNA, RNA, and energy transfer, are both required to support aquatic plant growth and are the key limiting nutrients in most aquatic and terrestrial ecosystems. Most researchers have concluded that no single factor is responsible, but rather interactions between two or more factors control the rates. River aquatic systems that have been heavily loaded with nutrients can display P limitation, N limitation, and colimitation, and what nutrient is most limiting can change both seasonally and spatial. At the transition between fresh and saline water, P can often be the limiting nutrient. P and dissolved silicate are also often limiting during the spring, with N limitation commonly occurring during summer months. Algal production during summer is supported by rapidly recycled P within the water column or released from sediments.\",\"PeriodicalId\":321483,\"journal\":{\"name\":\"Acta Hydrologica Slovaca\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Hydrologica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31577/ahs-2023-0024.01.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Hydrologica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31577/ahs-2023-0024.01.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

需要减少人为污染物对水生生态系统的投入,以保护饮用水供应和减少富营养化,包括有害藻华的扩散。蛋白质合成所需的氮(N)和DNA、RNA和能量传递所需的磷(P)都是支持水生植物生长所必需的,也是大多数水生和陆地生态系统中关键的限制性营养物质。大多数研究人员得出的结论是,没有单一因素起作用,而是两个或多个因素之间的相互作用控制了发病率。富营养化的河流水体系统表现出磷限制、氮限制和协同作用,且最受限制的营养物具有季节和空间上的变化。在淡水和咸水之间的过渡阶段,磷常常是限制养分。磷和溶解硅酸盐在春季也经常受到限制,氮的限制通常发生在夏季。夏季藻类的生产是由水柱内快速循环的磷或沉积物释放的磷支持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterioration of water quality in aquatic system
The need to reduce anthropogenic pollutants inputs to aquatic ecosystems in order to protect drinking-water supplies and to reduce eutrophication, including the proliferation of harmful algal blooms. Nitrogen (N), needed for protein synthesis, and phosphorus (P), needed for DNA, RNA, and energy transfer, are both required to support aquatic plant growth and are the key limiting nutrients in most aquatic and terrestrial ecosystems. Most researchers have concluded that no single factor is responsible, but rather interactions between two or more factors control the rates. River aquatic systems that have been heavily loaded with nutrients can display P limitation, N limitation, and colimitation, and what nutrient is most limiting can change both seasonally and spatial. At the transition between fresh and saline water, P can often be the limiting nutrient. P and dissolved silicate are also often limiting during the spring, with N limitation commonly occurring during summer months. Algal production during summer is supported by rapidly recycled P within the water column or released from sediments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信