基于强化学习的片上网络可重构容错偏转路由算法

Chaochao Feng, Zhonghai Lu, A. Jantsch, Jinwen Li, Minxuan Zhang
{"title":"基于强化学习的片上网络可重构容错偏转路由算法","authors":"Chaochao Feng, Zhonghai Lu, A. Jantsch, Jinwen Li, Minxuan Zhang","doi":"10.1145/1921249.1921254","DOIUrl":null,"url":null,"abstract":"We propose a reconfigurable fault-tolerant deflection routing algorithm (FTDR) based on reinforcement learning for NoC. The algorithm reconfigures the routing table through a kind of reinforcement learning---Q-learning using 2-hop fault information. It is topology-agnostic and insensitive to the shape of the fault region. In order to reduce the routing table size, we also propose a hierarchical Q-learning based deflection routing algorithm (FTDR-H) with area reduction up to 27% for a switch in an 8 x 8 mesh compared to the original FTDR. Experimental results show that in the presence of faults, FTDR and FTDR-H are better than other fault-tolerant deflection routing algorithms and a turn model based fault-tolerant routing algorithm.","PeriodicalId":344147,"journal":{"name":"Network on Chip Architectures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for network-on-chip\",\"authors\":\"Chaochao Feng, Zhonghai Lu, A. Jantsch, Jinwen Li, Minxuan Zhang\",\"doi\":\"10.1145/1921249.1921254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a reconfigurable fault-tolerant deflection routing algorithm (FTDR) based on reinforcement learning for NoC. The algorithm reconfigures the routing table through a kind of reinforcement learning---Q-learning using 2-hop fault information. It is topology-agnostic and insensitive to the shape of the fault region. In order to reduce the routing table size, we also propose a hierarchical Q-learning based deflection routing algorithm (FTDR-H) with area reduction up to 27% for a switch in an 8 x 8 mesh compared to the original FTDR. Experimental results show that in the presence of faults, FTDR and FTDR-H are better than other fault-tolerant deflection routing algorithms and a turn model based fault-tolerant routing algorithm.\",\"PeriodicalId\":344147,\"journal\":{\"name\":\"Network on Chip Architectures\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network on Chip Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1921249.1921254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network on Chip Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1921249.1921254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

提出了一种基于强化学习的可重构容错偏转路由算法(FTDR)。该算法通过一种利用2跳故障信息的强化学习——q学习来重新配置路由表。它是拓扑不可知的,对断层区域的形状不敏感。为了减少路由表的大小,我们还提出了一种基于分层q学习的偏转路由算法(FTDR- h),与原始FTDR相比,对于8 × 8网格中的交换机,该算法的面积减少了27%。实验结果表明,在存在故障的情况下,FTDR和FTDR- h优于其他容错偏转路由算法和基于转弯模型的容错路由算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for network-on-chip
We propose a reconfigurable fault-tolerant deflection routing algorithm (FTDR) based on reinforcement learning for NoC. The algorithm reconfigures the routing table through a kind of reinforcement learning---Q-learning using 2-hop fault information. It is topology-agnostic and insensitive to the shape of the fault region. In order to reduce the routing table size, we also propose a hierarchical Q-learning based deflection routing algorithm (FTDR-H) with area reduction up to 27% for a switch in an 8 x 8 mesh compared to the original FTDR. Experimental results show that in the presence of faults, FTDR and FTDR-H are better than other fault-tolerant deflection routing algorithms and a turn model based fault-tolerant routing algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信