Martin Hurta, Vojtěch Mrázek, Michaela Drahosova, L. Sekanina
{"title":"左旋多巴诱导运动障碍分类器节能硬件加速器的多目标设计","authors":"Martin Hurta, Vojtěch Mrázek, Michaela Drahosova, L. Sekanina","doi":"10.1109/DDECS57882.2023.10139399","DOIUrl":null,"url":null,"abstract":"Taking levodopa, a drug used to treat symptoms of Parkinson’s disease, is often connected with severe side effects, known as Levodopa-induced dyskinesia (LID). It can fluctuate in severity throughout the day and thus is difficult to classify during a short period of a physician’s visit. A low-power wearable classifier enabling long-term and continuous LID classification would thus significantly help with LID detection and dosage adjustment. This paper deals with an automated design of energy-efficient hardware accelerators of LID classifiers that can be implemented in wearable devices. The accelerator consists of a feature extractor and a classification circuit co-designed using genetic programming (GP). We also introduce and evaluate a fast and accurate energy consumption estimation method for the target architecture of considered classifiers. In a multiobjective design scenario, GP evolves solutions showing the best trade-offs between accuracy and energy. Compared to the state-of-the-art solutions, the proposed method leads to classifiers showing a comparable accuracy while the energy consumption is reduced by 49 %.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODEE-LID: Multiobjective Design of Energy-Efficient Hardware Accelerators for Levodopa-Induced Dyskinesia Classifiers\",\"authors\":\"Martin Hurta, Vojtěch Mrázek, Michaela Drahosova, L. Sekanina\",\"doi\":\"10.1109/DDECS57882.2023.10139399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking levodopa, a drug used to treat symptoms of Parkinson’s disease, is often connected with severe side effects, known as Levodopa-induced dyskinesia (LID). It can fluctuate in severity throughout the day and thus is difficult to classify during a short period of a physician’s visit. A low-power wearable classifier enabling long-term and continuous LID classification would thus significantly help with LID detection and dosage adjustment. This paper deals with an automated design of energy-efficient hardware accelerators of LID classifiers that can be implemented in wearable devices. The accelerator consists of a feature extractor and a classification circuit co-designed using genetic programming (GP). We also introduce and evaluate a fast and accurate energy consumption estimation method for the target architecture of considered classifiers. In a multiobjective design scenario, GP evolves solutions showing the best trade-offs between accuracy and energy. Compared to the state-of-the-art solutions, the proposed method leads to classifiers showing a comparable accuracy while the energy consumption is reduced by 49 %.\",\"PeriodicalId\":220690,\"journal\":{\"name\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS57882.2023.10139399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODEE-LID: Multiobjective Design of Energy-Efficient Hardware Accelerators for Levodopa-Induced Dyskinesia Classifiers
Taking levodopa, a drug used to treat symptoms of Parkinson’s disease, is often connected with severe side effects, known as Levodopa-induced dyskinesia (LID). It can fluctuate in severity throughout the day and thus is difficult to classify during a short period of a physician’s visit. A low-power wearable classifier enabling long-term and continuous LID classification would thus significantly help with LID detection and dosage adjustment. This paper deals with an automated design of energy-efficient hardware accelerators of LID classifiers that can be implemented in wearable devices. The accelerator consists of a feature extractor and a classification circuit co-designed using genetic programming (GP). We also introduce and evaluate a fast and accurate energy consumption estimation method for the target architecture of considered classifiers. In a multiobjective design scenario, GP evolves solutions showing the best trade-offs between accuracy and energy. Compared to the state-of-the-art solutions, the proposed method leads to classifiers showing a comparable accuracy while the energy consumption is reduced by 49 %.