{"title":"EgyHet:一种面向无线异构传感器网络的节能路由协议","authors":"Xiao Chen, Zanxun Dai, Hongchi Shi","doi":"10.1109/ICCNC.2013.6504187","DOIUrl":null,"url":null,"abstract":"Due to different requirements in application environment, wireless heterogeneous sensor networks (WHSNs) formed by sensors with various capacities are built. Data routing in WHSNs poses special challenges: First, it should be redesigned because the existing ones may not be directly used due to asymmetric links caused by diverse sensor transmission ranges. Second, it should guarantee an assured delivery rate because data is routed through lossy links. Third, it should be energy-efficient due to the limitation of sensor batteries and the difficulty of replacing them after deployment. To address these issues, we propose EgyHet: an Energy-saving routing protocol for Heterogeneous sensor networks. EgyHat deals with asymmetric links by establishing reverse paths. It saves energy by taking the shortest path, considering the remaining energy in sensors and reducing the number of forwarding nodes while guarantees an assured delivery rate. Simulation results show that EgyHat can save more energy yet keep the similar delivery ratio and latency to those of the existing routing protocol for WHSNs.","PeriodicalId":229123,"journal":{"name":"2013 International Conference on Computing, Networking and Communications (ICNC)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EgyHet: An energy-saving routing protocol for wireless heterogeneous sensor networks\",\"authors\":\"Xiao Chen, Zanxun Dai, Hongchi Shi\",\"doi\":\"10.1109/ICCNC.2013.6504187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to different requirements in application environment, wireless heterogeneous sensor networks (WHSNs) formed by sensors with various capacities are built. Data routing in WHSNs poses special challenges: First, it should be redesigned because the existing ones may not be directly used due to asymmetric links caused by diverse sensor transmission ranges. Second, it should guarantee an assured delivery rate because data is routed through lossy links. Third, it should be energy-efficient due to the limitation of sensor batteries and the difficulty of replacing them after deployment. To address these issues, we propose EgyHet: an Energy-saving routing protocol for Heterogeneous sensor networks. EgyHat deals with asymmetric links by establishing reverse paths. It saves energy by taking the shortest path, considering the remaining energy in sensors and reducing the number of forwarding nodes while guarantees an assured delivery rate. Simulation results show that EgyHat can save more energy yet keep the similar delivery ratio and latency to those of the existing routing protocol for WHSNs.\",\"PeriodicalId\":229123,\"journal\":{\"name\":\"2013 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2013.6504187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2013.6504187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EgyHet: An energy-saving routing protocol for wireless heterogeneous sensor networks
Due to different requirements in application environment, wireless heterogeneous sensor networks (WHSNs) formed by sensors with various capacities are built. Data routing in WHSNs poses special challenges: First, it should be redesigned because the existing ones may not be directly used due to asymmetric links caused by diverse sensor transmission ranges. Second, it should guarantee an assured delivery rate because data is routed through lossy links. Third, it should be energy-efficient due to the limitation of sensor batteries and the difficulty of replacing them after deployment. To address these issues, we propose EgyHet: an Energy-saving routing protocol for Heterogeneous sensor networks. EgyHat deals with asymmetric links by establishing reverse paths. It saves energy by taking the shortest path, considering the remaining energy in sensors and reducing the number of forwarding nodes while guarantees an assured delivery rate. Simulation results show that EgyHat can save more energy yet keep the similar delivery ratio and latency to those of the existing routing protocol for WHSNs.