Riadul Islam, H. Fahmy, Ping-Yao Lin, Matthew R. Guthaus
{"title":"差分电流模式时钟分布","authors":"Riadul Islam, H. Fahmy, Ping-Yao Lin, Matthew R. Guthaus","doi":"10.1109/MWSCAS.2015.7282042","DOIUrl":null,"url":null,"abstract":"In this paper, we present a differential current-mode pulsed flip-flop (DCMPFF) for low-power clock distribution using a representative 45nm CMOS technology. Experimental results show that the DCMPFF has 47% faster clock-to-output (CLK-Q) delay than a traditional voltage-mode (VM) pulsed flip-flop. When the DCMPFF is integrated with a differential current-mode clock distribution, the differential technique saves 62% and 17% power compared to a conventional VM and a previous current-mode (CM) clock network, respectively.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Differential current-mode clock distribution\",\"authors\":\"Riadul Islam, H. Fahmy, Ping-Yao Lin, Matthew R. Guthaus\",\"doi\":\"10.1109/MWSCAS.2015.7282042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a differential current-mode pulsed flip-flop (DCMPFF) for low-power clock distribution using a representative 45nm CMOS technology. Experimental results show that the DCMPFF has 47% faster clock-to-output (CLK-Q) delay than a traditional voltage-mode (VM) pulsed flip-flop. When the DCMPFF is integrated with a differential current-mode clock distribution, the differential technique saves 62% and 17% power compared to a conventional VM and a previous current-mode (CM) clock network, respectively.\",\"PeriodicalId\":216613,\"journal\":{\"name\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2015.7282042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present a differential current-mode pulsed flip-flop (DCMPFF) for low-power clock distribution using a representative 45nm CMOS technology. Experimental results show that the DCMPFF has 47% faster clock-to-output (CLK-Q) delay than a traditional voltage-mode (VM) pulsed flip-flop. When the DCMPFF is integrated with a differential current-mode clock distribution, the differential technique saves 62% and 17% power compared to a conventional VM and a previous current-mode (CM) clock network, respectively.