{"title":"低温生长缓冲层制备的GaAs场效应晶体管的电荷收集效率:与电荷沉积曲线的关系","authors":"D. McMorrow, A. Knudson, J. Melinger, S. Buchner","doi":"10.1109/RADECS.1999.858547","DOIUrl":null,"url":null,"abstract":"The dependence of the charge-collection processes of LT GaAs field-effect transistors on the depth profile of the deposited carriers is examined using computer simulation and laser-induced charge-collection measurements. The charge-collection simulations reveal a surprising dependence of the charge-collection efficiency on the location of the deposited charge, such that the charge-collection efficiency is largest for charge deposition below the LT GaAs buffer layer. These results implicate the significant role of charge-enhancement phenomena in the charge-collection processes of LT GaAs FETs. Experimental measurements performed as a function of the optical penetration depth support the conclusions of the simulation study.","PeriodicalId":135784,"journal":{"name":"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Charge-collection efficiency of GaAs field effect transistors fabricated with a low-temperature grown buffer layer: dependence on charge deposition profile\",\"authors\":\"D. McMorrow, A. Knudson, J. Melinger, S. Buchner\",\"doi\":\"10.1109/RADECS.1999.858547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dependence of the charge-collection processes of LT GaAs field-effect transistors on the depth profile of the deposited carriers is examined using computer simulation and laser-induced charge-collection measurements. The charge-collection simulations reveal a surprising dependence of the charge-collection efficiency on the location of the deposited charge, such that the charge-collection efficiency is largest for charge deposition below the LT GaAs buffer layer. These results implicate the significant role of charge-enhancement phenomena in the charge-collection processes of LT GaAs FETs. Experimental measurements performed as a function of the optical penetration depth support the conclusions of the simulation study.\",\"PeriodicalId\":135784,\"journal\":{\"name\":\"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADECS.1999.858547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS.1999.858547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge-collection efficiency of GaAs field effect transistors fabricated with a low-temperature grown buffer layer: dependence on charge deposition profile
The dependence of the charge-collection processes of LT GaAs field-effect transistors on the depth profile of the deposited carriers is examined using computer simulation and laser-induced charge-collection measurements. The charge-collection simulations reveal a surprising dependence of the charge-collection efficiency on the location of the deposited charge, such that the charge-collection efficiency is largest for charge deposition below the LT GaAs buffer layer. These results implicate the significant role of charge-enhancement phenomena in the charge-collection processes of LT GaAs FETs. Experimental measurements performed as a function of the optical penetration depth support the conclusions of the simulation study.