基于模糊学习参数的Adaline谐波分量辨识

M. Mohseni, M. Zamani, M. Joorabian
{"title":"基于模糊学习参数的Adaline谐波分量辨识","authors":"M. Mohseni, M. Zamani, M. Joorabian","doi":"10.1109/IECON.2007.4460109","DOIUrl":null,"url":null,"abstract":"Identification of different harmonic components of current/voltage signals is required in many power system applications e.g. power quality monitoring, active power filtering, and digital system protection. In this paper, a method based on the adaptive linear combiner (Adaline) is presented for harmonic components identification. The convergence speed and the estimation error of the Adaline are governed by the learning parameter (LP) in the weight adaptation rule of this artificial neural network. Thus, instead of a constant LP utilized in the conventional Adaline, this paper proposes the implementation of a fuzzy inference system (FIS) for suitable adjustment of the LP. Two simulation studies are conducted on the MATLAB and PSCAD/EMTDC to show the validity and performance of the proposed method.","PeriodicalId":199609,"journal":{"name":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Harmonic Components Identification through the Adaline with Fuzzy Learning Parameter\",\"authors\":\"M. Mohseni, M. Zamani, M. Joorabian\",\"doi\":\"10.1109/IECON.2007.4460109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of different harmonic components of current/voltage signals is required in many power system applications e.g. power quality monitoring, active power filtering, and digital system protection. In this paper, a method based on the adaptive linear combiner (Adaline) is presented for harmonic components identification. The convergence speed and the estimation error of the Adaline are governed by the learning parameter (LP) in the weight adaptation rule of this artificial neural network. Thus, instead of a constant LP utilized in the conventional Adaline, this paper proposes the implementation of a fuzzy inference system (FIS) for suitable adjustment of the LP. Two simulation studies are conducted on the MATLAB and PSCAD/EMTDC to show the validity and performance of the proposed method.\",\"PeriodicalId\":199609,\"journal\":{\"name\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2007.4460109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2007.4460109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在许多电力系统应用中,例如电能质量监测、有源滤波和数字系统保护,都需要识别电流/电压信号的不同谐波分量。提出了一种基于自适应线性组合器(Adaline)的谐波分量识别方法。该人工神经网络的权值自适应规则中的学习参数(LP)控制了Adaline的收敛速度和估计误差。因此,本文提出了一种模糊推理系统(FIS)来实现对LP的适当调整,而不是传统Adaline中使用的恒定LP。在MATLAB和PSCAD/EMTDC上进行了仿真研究,验证了该方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Components Identification through the Adaline with Fuzzy Learning Parameter
Identification of different harmonic components of current/voltage signals is required in many power system applications e.g. power quality monitoring, active power filtering, and digital system protection. In this paper, a method based on the adaptive linear combiner (Adaline) is presented for harmonic components identification. The convergence speed and the estimation error of the Adaline are governed by the learning parameter (LP) in the weight adaptation rule of this artificial neural network. Thus, instead of a constant LP utilized in the conventional Adaline, this paper proposes the implementation of a fuzzy inference system (FIS) for suitable adjustment of the LP. Two simulation studies are conducted on the MATLAB and PSCAD/EMTDC to show the validity and performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信