基于视觉反馈预测障碍运动的圆柱机器人在线无碰撞轨迹规划

Y. Chien, A. Koivo
{"title":"基于视觉反馈预测障碍运动的圆柱机器人在线无碰撞轨迹规划","authors":"Y. Chien, A. Koivo","doi":"10.1109/IROS.1989.637967","DOIUrl":null,"url":null,"abstract":"ABSmACT When a robot moves in a partially known environment, the desired trajectory generated in advance (off-line) may lead to collisions with nonstationary obstacles. Therefore, the on-line detection of obstacles in the workspace from sensor information, testing for potential collisions of the robot with obstacles, and possible on-line modifications of the planned trajectory are necessary. This paper describes a method that uses computer vision to detect a moving obstacle in the three-dimensional robot workspace. The movements of the obstacle of unknown dynamics are predicted by means of a recursive autoregressive (AR) time series model, in which the parameters are estimated by the least mean squared error method. This algorithm is combined with an on-line robot trajectory planning algorithm to generate a collision-free trajectory for the cylindrical robot. The approach is demonstrated by laboratory","PeriodicalId":332317,"journal":{"name":"Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Visual Feedback To Predict Obstacle Motion For On-line Collision-free Trajectory Planning Of Cylindrical Robots\",\"authors\":\"Y. Chien, A. Koivo\",\"doi\":\"10.1109/IROS.1989.637967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSmACT When a robot moves in a partially known environment, the desired trajectory generated in advance (off-line) may lead to collisions with nonstationary obstacles. Therefore, the on-line detection of obstacles in the workspace from sensor information, testing for potential collisions of the robot with obstacles, and possible on-line modifications of the planned trajectory are necessary. This paper describes a method that uses computer vision to detect a moving obstacle in the three-dimensional robot workspace. The movements of the obstacle of unknown dynamics are predicted by means of a recursive autoregressive (AR) time series model, in which the parameters are estimated by the least mean squared error method. This algorithm is combined with an on-line robot trajectory planning algorithm to generate a collision-free trajectory for the cylindrical robot. The approach is demonstrated by laboratory\",\"PeriodicalId\":332317,\"journal\":{\"name\":\"Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1989.637967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1989.637967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当机器人在部分已知的环境中运动时,预先生成的期望轨迹(离线)可能导致与非静止障碍物的碰撞。因此,从传感器信息中在线检测工作空间中的障碍物,测试机器人与障碍物的潜在碰撞,以及可能的在线修改规划轨迹是必要的。本文介绍了一种利用计算机视觉检测三维机器人工作空间中移动障碍物的方法。采用递归自回归(AR)时间序列模型对未知动力障碍物的运动进行预测,该模型采用最小均方误差法估计参数。该算法与在线机器人轨迹规划算法相结合,为圆柱形机器人生成无碰撞轨迹。实验验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Feedback To Predict Obstacle Motion For On-line Collision-free Trajectory Planning Of Cylindrical Robots
ABSmACT When a robot moves in a partially known environment, the desired trajectory generated in advance (off-line) may lead to collisions with nonstationary obstacles. Therefore, the on-line detection of obstacles in the workspace from sensor information, testing for potential collisions of the robot with obstacles, and possible on-line modifications of the planned trajectory are necessary. This paper describes a method that uses computer vision to detect a moving obstacle in the three-dimensional robot workspace. The movements of the obstacle of unknown dynamics are predicted by means of a recursive autoregressive (AR) time series model, in which the parameters are estimated by the least mean squared error method. This algorithm is combined with an on-line robot trajectory planning algorithm to generate a collision-free trajectory for the cylindrical robot. The approach is demonstrated by laboratory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信