六足机器人的动态稳定性算法

B. Sai, B. Kumar, B. Reddy, A. Kumaar
{"title":"六足机器人的动态稳定性算法","authors":"B. Sai, B. Kumar, B. Reddy, A. Kumaar","doi":"10.1109/RDCAPE.2017.8358230","DOIUrl":null,"url":null,"abstract":"Navigation on different types of terrain has formed a barrier in usage of robots across various fields. Legged robots have more maneuverability compared to wheeled robots and can able to traverse on any kind of surface. Hexapod is a six-legged robot which is statically stable and can navigate on uneven surface. This work focuses on developing a stability algorithm using a closed loop control system with Inertial Measurement Unit as feedback sensor. Control system is used to calculate the motor angles in order to achieve stability over inclined surface. The proposed algorithm aims in selecting appropriate motors to control by moving it to the angle generated by the control system. The algorithm was implemented and tested on Amrita Hexapod Robot (AHR) platform.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic stability algorithm for a Hexapod Robot\",\"authors\":\"B. Sai, B. Kumar, B. Reddy, A. Kumaar\",\"doi\":\"10.1109/RDCAPE.2017.8358230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation on different types of terrain has formed a barrier in usage of robots across various fields. Legged robots have more maneuverability compared to wheeled robots and can able to traverse on any kind of surface. Hexapod is a six-legged robot which is statically stable and can navigate on uneven surface. This work focuses on developing a stability algorithm using a closed loop control system with Inertial Measurement Unit as feedback sensor. Control system is used to calculate the motor angles in order to achieve stability over inclined surface. The proposed algorithm aims in selecting appropriate motors to control by moving it to the angle generated by the control system. The algorithm was implemented and tested on Amrita Hexapod Robot (AHR) platform.\",\"PeriodicalId\":442235,\"journal\":{\"name\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RDCAPE.2017.8358230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在不同类型的地形上进行导航,对机器人在各个领域的应用形成了障碍。与轮式机器人相比,腿式机器人具有更强的机动性,可以在任何表面上行走。六足机器人是一种静态稳定的六足机器人,可以在不平坦的表面上行走。本文的工作重点是利用惯性测量单元作为反馈传感器的闭环控制系统,开发一种稳定算法。控制系统通过计算电机角度来实现在斜面上的稳定。该算法的目的是通过将电机移动到控制系统生成的角度来选择合适的电机进行控制。该算法在Amrita六足机器人(AHR)平台上进行了实现和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic stability algorithm for a Hexapod Robot
Navigation on different types of terrain has formed a barrier in usage of robots across various fields. Legged robots have more maneuverability compared to wheeled robots and can able to traverse on any kind of surface. Hexapod is a six-legged robot which is statically stable and can navigate on uneven surface. This work focuses on developing a stability algorithm using a closed loop control system with Inertial Measurement Unit as feedback sensor. Control system is used to calculate the motor angles in order to achieve stability over inclined surface. The proposed algorithm aims in selecting appropriate motors to control by moving it to the angle generated by the control system. The algorithm was implemented and tested on Amrita Hexapod Robot (AHR) platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信