基于Knn密度的高维多光谱图像聚类

T. Tran, R. Wehrens, L. Buydens
{"title":"基于Knn密度的高维多光谱图像聚类","authors":"T. Tran, R. Wehrens, L. Buydens","doi":"10.1109/DFUA.2003.1219976","DOIUrl":null,"url":null,"abstract":"High resolution and high dimension satellite images cause problems for clustering methods due to clusters of different sizes, shapes and densities. The most common clustering methods, e.g. K-means and ISODATA, do not work well for such kinds of datasets. In this work, density estimation techniques and density-based clustering methods are exploited. Density-based clustering is well known in data mining to classify a data set based on its density parameters, where lower density areas separate high-density areas, although it can only work with a simple data set in which cluster densities are not very different. Out contribution is to propose the k nearest neighbor (knn) density-based rule for high dimensional dataset and to develop a new knn density-based clustering (KNNCLUST) for such complex dataset. KNNCLUST is stable, clear and easy to understand and implement. The number of clusters is automatically determined. These properties are illustrated by the segmentation of a multispectral image of a floodplain in the Netherlands.","PeriodicalId":308988,"journal":{"name":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Knn density-based clustering for high dimensional multispectral images\",\"authors\":\"T. Tran, R. Wehrens, L. Buydens\",\"doi\":\"10.1109/DFUA.2003.1219976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High resolution and high dimension satellite images cause problems for clustering methods due to clusters of different sizes, shapes and densities. The most common clustering methods, e.g. K-means and ISODATA, do not work well for such kinds of datasets. In this work, density estimation techniques and density-based clustering methods are exploited. Density-based clustering is well known in data mining to classify a data set based on its density parameters, where lower density areas separate high-density areas, although it can only work with a simple data set in which cluster densities are not very different. Out contribution is to propose the k nearest neighbor (knn) density-based rule for high dimensional dataset and to develop a new knn density-based clustering (KNNCLUST) for such complex dataset. KNNCLUST is stable, clear and easy to understand and implement. The number of clusters is automatically determined. These properties are illustrated by the segmentation of a multispectral image of a floodplain in the Netherlands.\",\"PeriodicalId\":308988,\"journal\":{\"name\":\"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFUA.2003.1219976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFUA.2003.1219976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

高分辨率和高维卫星图像由于簇的大小、形状和密度不同,给聚类方法带来了问题。最常见的聚类方法,例如K-means和ISODATA,并不适合这类数据集。在这项工作中,利用了密度估计技术和基于密度的聚类方法。基于密度的聚类在数据挖掘中是众所周知的,它根据密度参数对数据集进行分类,其中低密度区域分开高密度区域,尽管它只能用于聚类密度差异不大的简单数据集。我们的贡献是针对高维数据集提出了基于k近邻(knn)密度的规则,并针对这种复杂的数据集开发了一种新的基于KNNCLUST的聚类方法。KNNCLUST稳定,清晰,易于理解和实施。集群的数量是自动确定的。荷兰洪泛区的多光谱图像分割说明了这些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knn density-based clustering for high dimensional multispectral images
High resolution and high dimension satellite images cause problems for clustering methods due to clusters of different sizes, shapes and densities. The most common clustering methods, e.g. K-means and ISODATA, do not work well for such kinds of datasets. In this work, density estimation techniques and density-based clustering methods are exploited. Density-based clustering is well known in data mining to classify a data set based on its density parameters, where lower density areas separate high-density areas, although it can only work with a simple data set in which cluster densities are not very different. Out contribution is to propose the k nearest neighbor (knn) density-based rule for high dimensional dataset and to develop a new knn density-based clustering (KNNCLUST) for such complex dataset. KNNCLUST is stable, clear and easy to understand and implement. The number of clusters is automatically determined. These properties are illustrated by the segmentation of a multispectral image of a floodplain in the Netherlands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信