{"title":"用统计模型检验的方法分析AxC系统的动态方面","authors":"Josef Strnadel","doi":"10.1109/ddecs54261.2022.9770166","DOIUrl":null,"url":null,"abstract":"Many researchers shown that approximate circuits are able to provide a new perspective on the development of electronic systems. Mostly, they tried to find an optimal trade-off between the approximation error and resource savings for predefined applications. However, they used to concentrate mainly on design aspects regarding relaxed functional requirements, but neglected aspects like timing, sequential/asynchronous nature of circuits, uncertainty due to process/parameter variations, excessively high operating frequencies or low voltages. This paper aims to take a step ahead by moving towards the verification of dynamic properties of systems based on approximate circuits, with a focus on sequential/asynchronous circuits and uncertainty. First, the paper presents our approach to modeling approximate systems by means of stochastic hybrid timed automata. Then, it shows the principle/advantage of verifying properties of modeled systems by the so-called statistical model checking technique. Further, it presents a framework that takes at its input the model of an accurate system, its timing and other requirements and expected properties, information about basic building blocks and acceptable cost/quality trade-off to produce an approximated system that meets the requirements maximally and satisfies the properties. Finally, the paper evaluates our approach and outlines future research perspectives.","PeriodicalId":334461,"journal":{"name":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Dynamic Aspects of AxC Systems by Means of Statistical Model Checking\",\"authors\":\"Josef Strnadel\",\"doi\":\"10.1109/ddecs54261.2022.9770166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many researchers shown that approximate circuits are able to provide a new perspective on the development of electronic systems. Mostly, they tried to find an optimal trade-off between the approximation error and resource savings for predefined applications. However, they used to concentrate mainly on design aspects regarding relaxed functional requirements, but neglected aspects like timing, sequential/asynchronous nature of circuits, uncertainty due to process/parameter variations, excessively high operating frequencies or low voltages. This paper aims to take a step ahead by moving towards the verification of dynamic properties of systems based on approximate circuits, with a focus on sequential/asynchronous circuits and uncertainty. First, the paper presents our approach to modeling approximate systems by means of stochastic hybrid timed automata. Then, it shows the principle/advantage of verifying properties of modeled systems by the so-called statistical model checking technique. Further, it presents a framework that takes at its input the model of an accurate system, its timing and other requirements and expected properties, information about basic building blocks and acceptable cost/quality trade-off to produce an approximated system that meets the requirements maximally and satisfies the properties. Finally, the paper evaluates our approach and outlines future research perspectives.\",\"PeriodicalId\":334461,\"journal\":{\"name\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ddecs54261.2022.9770166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ddecs54261.2022.9770166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Dynamic Aspects of AxC Systems by Means of Statistical Model Checking
Many researchers shown that approximate circuits are able to provide a new perspective on the development of electronic systems. Mostly, they tried to find an optimal trade-off between the approximation error and resource savings for predefined applications. However, they used to concentrate mainly on design aspects regarding relaxed functional requirements, but neglected aspects like timing, sequential/asynchronous nature of circuits, uncertainty due to process/parameter variations, excessively high operating frequencies or low voltages. This paper aims to take a step ahead by moving towards the verification of dynamic properties of systems based on approximate circuits, with a focus on sequential/asynchronous circuits and uncertainty. First, the paper presents our approach to modeling approximate systems by means of stochastic hybrid timed automata. Then, it shows the principle/advantage of verifying properties of modeled systems by the so-called statistical model checking technique. Further, it presents a framework that takes at its input the model of an accurate system, its timing and other requirements and expected properties, information about basic building blocks and acceptable cost/quality trade-off to produce an approximated system that meets the requirements maximally and satisfies the properties. Finally, the paper evaluates our approach and outlines future research perspectives.