{"title":"二维纳米电子学:从石墨烯到硅烯及其他","authors":"D. Akinwande","doi":"10.23919/SNW.2017.8242331","DOIUrl":null,"url":null,"abstract":"This research work describes progress towards 2D nanoelectronics based on atomic sheets such as graphene, M0S2, black phosphorus, silicene and related materials. These diverse 2D nanomaterials can afford a wide range of device capabilities including low-power transistors, high-speed devices, zero-power switches, and wearable sensors. In addition, silicene, the atomically-thin equivalent of bulk silicon is predicted to be a topological insulator and in conjunction with related Xene sheets, can enable low-energy topological bits as a paradigm-shift for computation.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D nanoelectronics: From graphene to silicene and beyond\",\"authors\":\"D. Akinwande\",\"doi\":\"10.23919/SNW.2017.8242331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research work describes progress towards 2D nanoelectronics based on atomic sheets such as graphene, M0S2, black phosphorus, silicene and related materials. These diverse 2D nanomaterials can afford a wide range of device capabilities including low-power transistors, high-speed devices, zero-power switches, and wearable sensors. In addition, silicene, the atomically-thin equivalent of bulk silicon is predicted to be a topological insulator and in conjunction with related Xene sheets, can enable low-energy topological bits as a paradigm-shift for computation.\",\"PeriodicalId\":424135,\"journal\":{\"name\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2017.8242331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2D nanoelectronics: From graphene to silicene and beyond
This research work describes progress towards 2D nanoelectronics based on atomic sheets such as graphene, M0S2, black phosphorus, silicene and related materials. These diverse 2D nanomaterials can afford a wide range of device capabilities including low-power transistors, high-speed devices, zero-power switches, and wearable sensors. In addition, silicene, the atomically-thin equivalent of bulk silicon is predicted to be a topological insulator and in conjunction with related Xene sheets, can enable low-energy topological bits as a paradigm-shift for computation.