Luis F. González-Portillo, Kevin Albrecht, J. Sment, Brantley Mills, C. Ho
{"title":"基于颗粒的光热发电系统平准化电力成本敏感性分析","authors":"Luis F. González-Portillo, Kevin Albrecht, J. Sment, Brantley Mills, C. Ho","doi":"10.1115/es2021-63223","DOIUrl":null,"url":null,"abstract":"\n This study presents a sensitivity analysis of the LCOE for a particle-based system with the costs of the most current components. New models for the primary heat exchanger, thermal energy storage and tower are presented and used to establish lower and upper bounds for these three components. The rest of component costs such as particle cost, cavity cost, lift cost and balance of power are set to lower and upper bounds estimating a 25% of uncertainty. Some relevant parameters such as lift efficiency and storage thermal resistance are also included in the analysis with a 25% uncertainty. This study also includes an upgrade to the receiver model by including the wind effect in the efficiency, which was not included in previous publications. A parametric analysis shows the optimum values of solar multiple, storage hours, tower height and concentration ratio, and a probabilistic analysis provides a cumulative distribution function for a range of LCOE values. The results show that the LCOE could be below $0.06/kWh with a probability of 90%, where the highest uncertainty is on the primary heat exchanger cost.","PeriodicalId":256237,"journal":{"name":"ASME 2021 15th International Conference on Energy Sustainability","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity Analysis of the Levelized Cost of Electricity for a Particle-Based CSP System\",\"authors\":\"Luis F. González-Portillo, Kevin Albrecht, J. Sment, Brantley Mills, C. Ho\",\"doi\":\"10.1115/es2021-63223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study presents a sensitivity analysis of the LCOE for a particle-based system with the costs of the most current components. New models for the primary heat exchanger, thermal energy storage and tower are presented and used to establish lower and upper bounds for these three components. The rest of component costs such as particle cost, cavity cost, lift cost and balance of power are set to lower and upper bounds estimating a 25% of uncertainty. Some relevant parameters such as lift efficiency and storage thermal resistance are also included in the analysis with a 25% uncertainty. This study also includes an upgrade to the receiver model by including the wind effect in the efficiency, which was not included in previous publications. A parametric analysis shows the optimum values of solar multiple, storage hours, tower height and concentration ratio, and a probabilistic analysis provides a cumulative distribution function for a range of LCOE values. The results show that the LCOE could be below $0.06/kWh with a probability of 90%, where the highest uncertainty is on the primary heat exchanger cost.\",\"PeriodicalId\":256237,\"journal\":{\"name\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 15th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2021-63223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 15th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2021-63223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity Analysis of the Levelized Cost of Electricity for a Particle-Based CSP System
This study presents a sensitivity analysis of the LCOE for a particle-based system with the costs of the most current components. New models for the primary heat exchanger, thermal energy storage and tower are presented and used to establish lower and upper bounds for these three components. The rest of component costs such as particle cost, cavity cost, lift cost and balance of power are set to lower and upper bounds estimating a 25% of uncertainty. Some relevant parameters such as lift efficiency and storage thermal resistance are also included in the analysis with a 25% uncertainty. This study also includes an upgrade to the receiver model by including the wind effect in the efficiency, which was not included in previous publications. A parametric analysis shows the optimum values of solar multiple, storage hours, tower height and concentration ratio, and a probabilistic analysis provides a cumulative distribution function for a range of LCOE values. The results show that the LCOE could be below $0.06/kWh with a probability of 90%, where the highest uncertainty is on the primary heat exchanger cost.