S. Samaranayake, Emil Gizdarski, Nodari Sitchinava, Frederic Neuveux, R. Kapur, T. Williams
{"title":"一个可重构的共享扫描架构","authors":"S. Samaranayake, Emil Gizdarski, Nodari Sitchinava, Frederic Neuveux, R. Kapur, T. Williams","doi":"10.1109/VTEST.2003.1197627","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient technique for test data volume reduction based on the shared scan-in (Illinois Scan) architecture and the scan chain reconfiguration (Dynamic Scan) architecture is defined. The composite architecture is created with analysis that relies on the compatibility relation of scan chains. Topological analysis and compatibility analysis are used to maximize gains in test data volume and test application time. The goal of the proposed synthesis procedure is to test all detectable faults in broadcast test mode using minimum scan-chain configurations. As a result, more aggressive sharing of scan inputs can be applied for test data volume and test application time reduction. The experimental results demonstrate the efficiency of the proposed architecture for real-industrial circuits.","PeriodicalId":292996,"journal":{"name":"Proceedings. 21st VLSI Test Symposium, 2003.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"A reconfigurable shared scan-in architecture\",\"authors\":\"S. Samaranayake, Emil Gizdarski, Nodari Sitchinava, Frederic Neuveux, R. Kapur, T. Williams\",\"doi\":\"10.1109/VTEST.2003.1197627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient technique for test data volume reduction based on the shared scan-in (Illinois Scan) architecture and the scan chain reconfiguration (Dynamic Scan) architecture is defined. The composite architecture is created with analysis that relies on the compatibility relation of scan chains. Topological analysis and compatibility analysis are used to maximize gains in test data volume and test application time. The goal of the proposed synthesis procedure is to test all detectable faults in broadcast test mode using minimum scan-chain configurations. As a result, more aggressive sharing of scan inputs can be applied for test data volume and test application time reduction. The experimental results demonstrate the efficiency of the proposed architecture for real-industrial circuits.\",\"PeriodicalId\":292996,\"journal\":{\"name\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.2003.1197627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 21st VLSI Test Symposium, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.2003.1197627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, an efficient technique for test data volume reduction based on the shared scan-in (Illinois Scan) architecture and the scan chain reconfiguration (Dynamic Scan) architecture is defined. The composite architecture is created with analysis that relies on the compatibility relation of scan chains. Topological analysis and compatibility analysis are used to maximize gains in test data volume and test application time. The goal of the proposed synthesis procedure is to test all detectable faults in broadcast test mode using minimum scan-chain configurations. As a result, more aggressive sharing of scan inputs can be applied for test data volume and test application time reduction. The experimental results demonstrate the efficiency of the proposed architecture for real-industrial circuits.