用波波夫稳定性判据重新分析锁相环的稳定性

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Yilong Chen, Mauricio C. de Oliveira
{"title":"用波波夫稳定性判据重新分析锁相环的稳定性","authors":"Yilong Chen,&nbsp;Mauricio C. de Oliveira","doi":"10.1016/j.ifacsc.2021.100177","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper revisits the problem of stability analysis of Phase-Locked Loops (PLLs), focusing specifically on stability conditions derived using the Popov Stability Criterion. A new form of the Popov based frequency domain criterion is derived in which the size of the stability region, the PLL locking range, appears independently of the loop transfer-function. This enables one to maximize the stability region graphically and directly on the Popov plot, rather than iteratively. Various numerical and analytic results available in the literature are shown to be particular cases of the proposed new stability test. It is also shown that for PLLs of type </span><span><math><mi>r</mi></math></span>, in which <span><math><mi>r</mi></math></span><span> denotes the number of integrators in the loop, it is not possible to achieve full locking range if </span><span><math><mi>r</mi></math></span> is larger or equal than three.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"18 ","pages":"Article 100177"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Revisiting stability analysis of Phase-Locked Loops with the Popov Stability Criterion\",\"authors\":\"Yilong Chen,&nbsp;Mauricio C. de Oliveira\",\"doi\":\"10.1016/j.ifacsc.2021.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper revisits the problem of stability analysis of Phase-Locked Loops (PLLs), focusing specifically on stability conditions derived using the Popov Stability Criterion. A new form of the Popov based frequency domain criterion is derived in which the size of the stability region, the PLL locking range, appears independently of the loop transfer-function. This enables one to maximize the stability region graphically and directly on the Popov plot, rather than iteratively. Various numerical and analytic results available in the literature are shown to be particular cases of the proposed new stability test. It is also shown that for PLLs of type </span><span><math><mi>r</mi></math></span>, in which <span><math><mi>r</mi></math></span><span> denotes the number of integrators in the loop, it is not possible to achieve full locking range if </span><span><math><mi>r</mi></math></span> is larger or equal than three.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"18 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601821000249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601821000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文重新讨论了锁相环的稳定性分析问题,重点讨论了利用波波夫稳定性判据导出的稳定性条件。推导了一种新的波波夫频域判据形式,该判据中稳定域的大小,锁相环的锁定范围,与环传递函数无关。这使得人们可以直接在波波夫图上图形化地最大化稳定区域,而不是迭代地。文献中的各种数值和分析结果都是所提出的新稳定性试验的特殊情况。对于r型锁相环,其中r表示环内积分器的个数,如果r大于等于3,则不可能实现全锁定范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting stability analysis of Phase-Locked Loops with the Popov Stability Criterion

This paper revisits the problem of stability analysis of Phase-Locked Loops (PLLs), focusing specifically on stability conditions derived using the Popov Stability Criterion. A new form of the Popov based frequency domain criterion is derived in which the size of the stability region, the PLL locking range, appears independently of the loop transfer-function. This enables one to maximize the stability region graphically and directly on the Popov plot, rather than iteratively. Various numerical and analytic results available in the literature are shown to be particular cases of the proposed new stability test. It is also shown that for PLLs of type r, in which r denotes the number of integrators in the loop, it is not possible to achieve full locking range if r is larger or equal than three.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信