风冷水轮发电机热力模型的参数优化与模型拟合

Madhusudhan Pandey, Thomas Øyvang, B. Lie
{"title":"风冷水轮发电机热力模型的参数优化与模型拟合","authors":"Madhusudhan Pandey, Thomas Øyvang, B. Lie","doi":"10.1109/ESS50319.2020.9160226","DOIUrl":null,"url":null,"abstract":"Parameter optimization plays a vital role in fitting a mathematical model with experimental data. In the prior model development, some of the parameters are either chosen based on an educated guess or hit and trial method or even at random. This causes the mathematical model to drift away with experimental data. The optimized value of parameters can be found formulating a least-squares data fitting problem. In this paper, parameters of four mathematical quasi-linear thermal models of an air-cooled hydrogenerator are optimized. We have formulated the data fitting problem by using two different measurement data vectors. First, we have used a measurement data vector containing measurement of two of the states for finding optimized parameters and second, we have used two of the states and two of the algebraic variables. The optimized parameters found by using two different measurement data vectors are then used for fitting mathematical models with experimental data. The performance of model fitting is then compared using root mean square errors (RMSE) of least square errors. We found that the choice of data affects model fitting.","PeriodicalId":169630,"journal":{"name":"2020 IEEE 7th International Conference on Energy Smart Systems (ESS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Optimization and Model Fitting of Thermal Models of Air-cooled Hydrogenerator\",\"authors\":\"Madhusudhan Pandey, Thomas Øyvang, B. Lie\",\"doi\":\"10.1109/ESS50319.2020.9160226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter optimization plays a vital role in fitting a mathematical model with experimental data. In the prior model development, some of the parameters are either chosen based on an educated guess or hit and trial method or even at random. This causes the mathematical model to drift away with experimental data. The optimized value of parameters can be found formulating a least-squares data fitting problem. In this paper, parameters of four mathematical quasi-linear thermal models of an air-cooled hydrogenerator are optimized. We have formulated the data fitting problem by using two different measurement data vectors. First, we have used a measurement data vector containing measurement of two of the states for finding optimized parameters and second, we have used two of the states and two of the algebraic variables. The optimized parameters found by using two different measurement data vectors are then used for fitting mathematical models with experimental data. The performance of model fitting is then compared using root mean square errors (RMSE) of least square errors. We found that the choice of data affects model fitting.\",\"PeriodicalId\":169630,\"journal\":{\"name\":\"2020 IEEE 7th International Conference on Energy Smart Systems (ESS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 7th International Conference on Energy Smart Systems (ESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESS50319.2020.9160226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 7th International Conference on Energy Smart Systems (ESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESS50319.2020.9160226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数优化是数学模型与实验数据拟合的关键。在先前的模型开发中,一些参数要么是基于有根据的猜测,要么是命中试验法,甚至是随机选择的。这导致数学模型偏离了实验数据。参数的最优值可以形成一个最小二乘数据拟合问题。本文对风冷水轮发电机四种准线性数学热模型的参数进行了优化。我们通过使用两个不同的测量数据向量来制定数据拟合问题。首先,我们使用了包含两个状态测量的测量数据向量来寻找优化参数,其次,我们使用了两个状态和两个代数变量。然后用两种不同测量数据向量得到的优化参数与实验数据进行数学模型拟合。然后使用最小二乘误差的均方根误差(RMSE)比较模型拟合的性能。我们发现数据的选择影响模型拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Optimization and Model Fitting of Thermal Models of Air-cooled Hydrogenerator
Parameter optimization plays a vital role in fitting a mathematical model with experimental data. In the prior model development, some of the parameters are either chosen based on an educated guess or hit and trial method or even at random. This causes the mathematical model to drift away with experimental data. The optimized value of parameters can be found formulating a least-squares data fitting problem. In this paper, parameters of four mathematical quasi-linear thermal models of an air-cooled hydrogenerator are optimized. We have formulated the data fitting problem by using two different measurement data vectors. First, we have used a measurement data vector containing measurement of two of the states for finding optimized parameters and second, we have used two of the states and two of the algebraic variables. The optimized parameters found by using two different measurement data vectors are then used for fitting mathematical models with experimental data. The performance of model fitting is then compared using root mean square errors (RMSE) of least square errors. We found that the choice of data affects model fitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信