{"title":"采用250nm InP DHBT技术的D和G频段平衡有源倍频器","authors":"Sona Carpenter, Z. He, H. Zirath","doi":"10.1109/CSICS.2017.8240437","DOIUrl":null,"url":null,"abstract":"A wideband balanced active frequency doubler at Dband (110–170 GHz) and a frequency tripler at G-band (140–220 GHz) is presented. The circuits are implemented in a 250nm InP DHBT technology with ft/fmax 350/600 GHz respectively. The experimental results of the frequency doubler exhibit an output power of 4.2 dBm with 3-dB output bandwidth from 120 to 158 GHz corresponding to 27.3 % relative bandwidth. The power efficiency is 11.9 % at 124 GHz output and 5 dBm input power. The doubler chip consumes a dc-power of 19 mW and the chip dimension is 0.45 × 0.4 mm2. The tripler chip can provide output power of 3.8 dBm and has 3-dB output bandwidth of 27 GHz from 162–189 GHz. The balanced topology and band pass filter were utilized in tripler circuit for harmonic suppression. The fundamental- and second-harmonic suppressions are better than 20 dBc and 28 dBc, respectively. The dc power consumption is 26 mW. The chip surface is 0.9 × 0.4 mm2.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Balanced active frequency multipliers in D and G bands using 250nm InP DHBT technology\",\"authors\":\"Sona Carpenter, Z. He, H. Zirath\",\"doi\":\"10.1109/CSICS.2017.8240437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wideband balanced active frequency doubler at Dband (110–170 GHz) and a frequency tripler at G-band (140–220 GHz) is presented. The circuits are implemented in a 250nm InP DHBT technology with ft/fmax 350/600 GHz respectively. The experimental results of the frequency doubler exhibit an output power of 4.2 dBm with 3-dB output bandwidth from 120 to 158 GHz corresponding to 27.3 % relative bandwidth. The power efficiency is 11.9 % at 124 GHz output and 5 dBm input power. The doubler chip consumes a dc-power of 19 mW and the chip dimension is 0.45 × 0.4 mm2. The tripler chip can provide output power of 3.8 dBm and has 3-dB output bandwidth of 27 GHz from 162–189 GHz. The balanced topology and band pass filter were utilized in tripler circuit for harmonic suppression. The fundamental- and second-harmonic suppressions are better than 20 dBc and 28 dBc, respectively. The dc power consumption is 26 mW. The chip surface is 0.9 × 0.4 mm2.\",\"PeriodicalId\":129729,\"journal\":{\"name\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2017.8240437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balanced active frequency multipliers in D and G bands using 250nm InP DHBT technology
A wideband balanced active frequency doubler at Dband (110–170 GHz) and a frequency tripler at G-band (140–220 GHz) is presented. The circuits are implemented in a 250nm InP DHBT technology with ft/fmax 350/600 GHz respectively. The experimental results of the frequency doubler exhibit an output power of 4.2 dBm with 3-dB output bandwidth from 120 to 158 GHz corresponding to 27.3 % relative bandwidth. The power efficiency is 11.9 % at 124 GHz output and 5 dBm input power. The doubler chip consumes a dc-power of 19 mW and the chip dimension is 0.45 × 0.4 mm2. The tripler chip can provide output power of 3.8 dBm and has 3-dB output bandwidth of 27 GHz from 162–189 GHz. The balanced topology and band pass filter were utilized in tripler circuit for harmonic suppression. The fundamental- and second-harmonic suppressions are better than 20 dBc and 28 dBc, respectively. The dc power consumption is 26 mW. The chip surface is 0.9 × 0.4 mm2.