基于眼动追踪数据的晕动病实时预测研究

S. Shimada, Y. Ikei, N. Nishiuchi, Vibol Yem
{"title":"基于眼动追踪数据的晕动病实时预测研究","authors":"S. Shimada, Y. Ikei, N. Nishiuchi, Vibol Yem","doi":"10.1109/VRW58643.2023.00278","DOIUrl":null,"url":null,"abstract":"Cybersickness seriously degrades users' experiences of virtual real-ity (VR). The level of cybersickness is commonly gauged through a simulator sickness questionnaire (SSQ) administered after the expe-rience. However, for observing the user's health and evaluating the VR content/device, measuring the level of cybersickness in real time is essential. In this study, we examined the relationship between eye tracking data and sickness level, then predicted the sickness level using machine learning methods. Some characteristics of eye related indices significantly differed between the sickness and non-sickness groups. The machine learning methods predicted cybersickness in real time with an accuracy of approximately 70%.","PeriodicalId":412598,"journal":{"name":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Cybersickness Prediction in Real Time Using Eye Tracking Data\",\"authors\":\"S. Shimada, Y. Ikei, N. Nishiuchi, Vibol Yem\",\"doi\":\"10.1109/VRW58643.2023.00278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cybersickness seriously degrades users' experiences of virtual real-ity (VR). The level of cybersickness is commonly gauged through a simulator sickness questionnaire (SSQ) administered after the expe-rience. However, for observing the user's health and evaluating the VR content/device, measuring the level of cybersickness in real time is essential. In this study, we examined the relationship between eye tracking data and sickness level, then predicted the sickness level using machine learning methods. Some characteristics of eye related indices significantly differed between the sickness and non-sickness groups. The machine learning methods predicted cybersickness in real time with an accuracy of approximately 70%.\",\"PeriodicalId\":412598,\"journal\":{\"name\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW58643.2023.00278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW58643.2023.00278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晕屏严重降低了用户对虚拟现实(VR)的体验。晕屏的程度通常通过体验后的模拟晕机问卷(SSQ)来衡量。然而,为了观察用户的健康状况和评估VR内容/设备,实时测量晕动症的水平是必不可少的。在这项研究中,我们检查了眼动追踪数据与疾病水平之间的关系,然后使用机器学习方法预测疾病水平。疾病组和非疾病组的眼相关指标的一些特征存在显著差异。机器学习方法可以实时预测晕动症,准确率约为70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Cybersickness Prediction in Real Time Using Eye Tracking Data
Cybersickness seriously degrades users' experiences of virtual real-ity (VR). The level of cybersickness is commonly gauged through a simulator sickness questionnaire (SSQ) administered after the expe-rience. However, for observing the user's health and evaluating the VR content/device, measuring the level of cybersickness in real time is essential. In this study, we examined the relationship between eye tracking data and sickness level, then predicted the sickness level using machine learning methods. Some characteristics of eye related indices significantly differed between the sickness and non-sickness groups. The machine learning methods predicted cybersickness in real time with an accuracy of approximately 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信