{"title":"氮化镓基隧道热电子晶体管的室温负差分电阻","authors":"Z. C. Yang, D. Nath, S. Rajan","doi":"10.1109/DRC.2014.6872343","DOIUrl":null,"url":null,"abstract":"In this work, we use ballistic quantum transport in a III-nitride to realize room temperature negative differential resistance (NDR) in a GaN-based Tunneling Hot Electron Transistor. The results showed reproducible double-sweep characteristics, with peak-to-valley ratio (PVCR) of 7.2 and peak current density (PCD) about 143 A/cm2. This is the first report of repeatable room temperature negative differential resistance in a III-nitride device.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room temperature negative differential resistance in a GaN-based Tunneling Hot Electron Transistor\",\"authors\":\"Z. C. Yang, D. Nath, S. Rajan\",\"doi\":\"10.1109/DRC.2014.6872343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we use ballistic quantum transport in a III-nitride to realize room temperature negative differential resistance (NDR) in a GaN-based Tunneling Hot Electron Transistor. The results showed reproducible double-sweep characteristics, with peak-to-valley ratio (PVCR) of 7.2 and peak current density (PCD) about 143 A/cm2. This is the first report of repeatable room temperature negative differential resistance in a III-nitride device.\",\"PeriodicalId\":293780,\"journal\":{\"name\":\"72nd Device Research Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"72nd Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2014.6872343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Room temperature negative differential resistance in a GaN-based Tunneling Hot Electron Transistor
In this work, we use ballistic quantum transport in a III-nitride to realize room temperature negative differential resistance (NDR) in a GaN-based Tunneling Hot Electron Transistor. The results showed reproducible double-sweep characteristics, with peak-to-valley ratio (PVCR) of 7.2 and peak current density (PCD) about 143 A/cm2. This is the first report of repeatable room temperature negative differential resistance in a III-nitride device.