避免未知地形慢动作翻车的机器人变几何优化方法

F. Tajti, B. Kovács, Géza Szayer, P. Korondi, Z. Szekely
{"title":"避免未知地形慢动作翻车的机器人变几何优化方法","authors":"F. Tajti, B. Kovács, Géza Szayer, P. Korondi, Z. Szekely","doi":"10.32565/aarms.2016.3.10","DOIUrl":null,"url":null,"abstract":"This paper presents a parametrized stability control method for special slow motion field mobile robots, based on use cases from border surveillance. The concept uses the centre of gravity (COG) as the virtual centre of motion (VCM). The simplified robot geometry is an input parameter of the model, so it can work with different types of mobile robots, like holonomic-wheeled, differential-wheeled, steered, tracked, wheeled-tracked, segmented, etc. structures. This method resulted in the implementation of a flexible and universal control algorithm for transformable and hybrid drive mobile robots, where every parameter can be changed and recalculated for different applications or even in discrete time steps during the motion at a 3D path. The velocity reference, the angular velocity reference and the optimization parameter (for example gravity compensation) of the robot can be prescribed. The model was implemented in MATLAB and can be compiled to C for measurements and validation with test robots.","PeriodicalId":171955,"journal":{"name":"Academic and Applied Research in Military and Public Management Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable Robot Geometry Optimization Method to Avoid Tip Over Situations During Slow Motion on Unknown Terrains\",\"authors\":\"F. Tajti, B. Kovács, Géza Szayer, P. Korondi, Z. Szekely\",\"doi\":\"10.32565/aarms.2016.3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parametrized stability control method for special slow motion field mobile robots, based on use cases from border surveillance. The concept uses the centre of gravity (COG) as the virtual centre of motion (VCM). The simplified robot geometry is an input parameter of the model, so it can work with different types of mobile robots, like holonomic-wheeled, differential-wheeled, steered, tracked, wheeled-tracked, segmented, etc. structures. This method resulted in the implementation of a flexible and universal control algorithm for transformable and hybrid drive mobile robots, where every parameter can be changed and recalculated for different applications or even in discrete time steps during the motion at a 3D path. The velocity reference, the angular velocity reference and the optimization parameter (for example gravity compensation) of the robot can be prescribed. The model was implemented in MATLAB and can be compiled to C for measurements and validation with test robots.\",\"PeriodicalId\":171955,\"journal\":{\"name\":\"Academic and Applied Research in Military and Public Management Science\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic and Applied Research in Military and Public Management Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32565/aarms.2016.3.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic and Applied Research in Military and Public Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32565/aarms.2016.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于边境监控用例,提出了一种特殊慢动作野外移动机器人的参数化稳定性控制方法。这个概念使用重心(COG)作为虚拟运动中心(VCM)。简化后的机器人几何形状是模型的输入参数,因此可以适用于不同类型的移动机器人,如全轮式、差动轮式、转向式、履带式、轮带式、分段式等结构。该方法为可转换和混合驱动移动机器人实现了灵活且通用的控制算法,其中每个参数都可以在不同的应用中改变和重新计算,甚至在3D路径运动期间的离散时间步长。可以规定机器人的速度基准、角速度基准和优化参数(如重力补偿)。该模型在MATLAB中实现,并可编译为C语言,用于测试机器人的测量和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Robot Geometry Optimization Method to Avoid Tip Over Situations During Slow Motion on Unknown Terrains
This paper presents a parametrized stability control method for special slow motion field mobile robots, based on use cases from border surveillance. The concept uses the centre of gravity (COG) as the virtual centre of motion (VCM). The simplified robot geometry is an input parameter of the model, so it can work with different types of mobile robots, like holonomic-wheeled, differential-wheeled, steered, tracked, wheeled-tracked, segmented, etc. structures. This method resulted in the implementation of a flexible and universal control algorithm for transformable and hybrid drive mobile robots, where every parameter can be changed and recalculated for different applications or even in discrete time steps during the motion at a 3D path. The velocity reference, the angular velocity reference and the optimization parameter (for example gravity compensation) of the robot can be prescribed. The model was implemented in MATLAB and can be compiled to C for measurements and validation with test robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信