{"title":"基于硬件的零日恶意软件精确检测的深度神经网络和迁移学习","authors":"Z. He, Amin Rezaei, H. Homayoun, H. Sayadi","doi":"10.1145/3526241.3530326","DOIUrl":null,"url":null,"abstract":"In recent years, security researchers have shifted their attentions to the underlying processors' architecture and proposed Hardware-Based Malware Detection (HMD) countermeasures to address inefficiencies of software-based detection methods. HMD techniques apply standard Machine Learning (ML) algorithms to the processors' low-level events collected from Hardware Performance Counter (HPC) registers. However, despite obtaining promising results for detecting known malware, the challenge of accurate zero-day (unknown) malware detection has remained an unresolved problem in existing HPC-based countermeasures. Our comprehensive analysis shows that standard ML classifiers are not effective in recognizing zero-day malware traces using HPC events. In response, we propose Deep-HMD, a two-stage intelligent and flexible approach based on deep neural network and transfer learning, for accurate zero-day malware detection based on image-based hardware events. The experimental results indicate that our proposed solution outperforms existing ML-based methods by achieving a 97% detection rate (F-Measure and Area Under the Curve) for detecting zero-day malware signatures at run-time using the top 4 hardware events with a minimal false positive rate and no hardware redesign overhead.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Neural Network and Transfer Learning for Accurate Hardware-Based Zero-Day Malware Detection\",\"authors\":\"Z. He, Amin Rezaei, H. Homayoun, H. Sayadi\",\"doi\":\"10.1145/3526241.3530326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, security researchers have shifted their attentions to the underlying processors' architecture and proposed Hardware-Based Malware Detection (HMD) countermeasures to address inefficiencies of software-based detection methods. HMD techniques apply standard Machine Learning (ML) algorithms to the processors' low-level events collected from Hardware Performance Counter (HPC) registers. However, despite obtaining promising results for detecting known malware, the challenge of accurate zero-day (unknown) malware detection has remained an unresolved problem in existing HPC-based countermeasures. Our comprehensive analysis shows that standard ML classifiers are not effective in recognizing zero-day malware traces using HPC events. In response, we propose Deep-HMD, a two-stage intelligent and flexible approach based on deep neural network and transfer learning, for accurate zero-day malware detection based on image-based hardware events. The experimental results indicate that our proposed solution outperforms existing ML-based methods by achieving a 97% detection rate (F-Measure and Area Under the Curve) for detecting zero-day malware signatures at run-time using the top 4 hardware events with a minimal false positive rate and no hardware redesign overhead.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Neural Network and Transfer Learning for Accurate Hardware-Based Zero-Day Malware Detection
In recent years, security researchers have shifted their attentions to the underlying processors' architecture and proposed Hardware-Based Malware Detection (HMD) countermeasures to address inefficiencies of software-based detection methods. HMD techniques apply standard Machine Learning (ML) algorithms to the processors' low-level events collected from Hardware Performance Counter (HPC) registers. However, despite obtaining promising results for detecting known malware, the challenge of accurate zero-day (unknown) malware detection has remained an unresolved problem in existing HPC-based countermeasures. Our comprehensive analysis shows that standard ML classifiers are not effective in recognizing zero-day malware traces using HPC events. In response, we propose Deep-HMD, a two-stage intelligent and flexible approach based on deep neural network and transfer learning, for accurate zero-day malware detection based on image-based hardware events. The experimental results indicate that our proposed solution outperforms existing ML-based methods by achieving a 97% detection rate (F-Measure and Area Under the Curve) for detecting zero-day malware signatures at run-time using the top 4 hardware events with a minimal false positive rate and no hardware redesign overhead.