D. Maksymenko, Nataliia Saichyshyna, Oleksii Turuta, O. Turuta, A. Yerokhin, A. Babii
{"title":"乌克兰语特定领域机器翻译模型的改进","authors":"D. Maksymenko, Nataliia Saichyshyna, Oleksii Turuta, O. Turuta, A. Yerokhin, A. Babii","doi":"10.1109/CSIT56902.2022.10000529","DOIUrl":null,"url":null,"abstract":"One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.","PeriodicalId":282561,"journal":{"name":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the Machine Translation Model in Specific Domains for the Ukrainian Language\",\"authors\":\"D. Maksymenko, Nataliia Saichyshyna, Oleksii Turuta, O. Turuta, A. Yerokhin, A. Babii\",\"doi\":\"10.1109/CSIT56902.2022.10000529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.\",\"PeriodicalId\":282561,\"journal\":{\"name\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIT56902.2022.10000529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIT56902.2022.10000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Machine Translation Model in Specific Domains for the Ukrainian Language
One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.