基于人工神经网络的智能电网能源欺诈检测

Vitaly Ford, Ambareen Siraj, W. Eberle
{"title":"基于人工神经网络的智能电网能源欺诈检测","authors":"Vitaly Ford, Ambareen Siraj, W. Eberle","doi":"10.1109/CIASG.2014.7011557","DOIUrl":null,"url":null,"abstract":"Energy fraud detection is a critical aspect of smart grid security and privacy preservation. Machine learning and data mining have been widely used by researchers for extensive intelligent analysis of data to recognize normal patterns of behavior such that deviations can be detected as anomalies. This paper discusses a novel application of a machine learning technique for examining the energy consumption data to report energy fraud using artificial neural networks and smart meter fine-grained data. Our approach achieves a higher energy fraud detection rate than similar works in this field. The proposed technique successfully identifies diverse forms of fraudulent activities resulting from unauthorized energy usage.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"22 49","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Smart grid energy fraud detection using artificial neural networks\",\"authors\":\"Vitaly Ford, Ambareen Siraj, W. Eberle\",\"doi\":\"10.1109/CIASG.2014.7011557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy fraud detection is a critical aspect of smart grid security and privacy preservation. Machine learning and data mining have been widely used by researchers for extensive intelligent analysis of data to recognize normal patterns of behavior such that deviations can be detected as anomalies. This paper discusses a novel application of a machine learning technique for examining the energy consumption data to report energy fraud using artificial neural networks and smart meter fine-grained data. Our approach achieves a higher energy fraud detection rate than similar works in this field. The proposed technique successfully identifies diverse forms of fraudulent activities resulting from unauthorized energy usage.\",\"PeriodicalId\":166543,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"volume\":\"22 49\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIASG.2014.7011557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

能源欺诈检测是智能电网安全和隐私保护的一个关键方面。机器学习和数据挖掘已被研究人员广泛用于数据的广泛智能分析,以识别正常的行为模式,从而将偏差检测为异常。本文讨论了一种机器学习技术的新应用,该技术用于检查能耗数据,以使用人工神经网络和智能电表细粒度数据报告能源欺诈。我们的方法比该领域的同类工作实现了更高的能源欺诈检测率。所建议的技术成功地识别了由未经授权的能源使用引起的各种形式的欺诈活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart grid energy fraud detection using artificial neural networks
Energy fraud detection is a critical aspect of smart grid security and privacy preservation. Machine learning and data mining have been widely used by researchers for extensive intelligent analysis of data to recognize normal patterns of behavior such that deviations can be detected as anomalies. This paper discusses a novel application of a machine learning technique for examining the energy consumption data to report energy fraud using artificial neural networks and smart meter fine-grained data. Our approach achieves a higher energy fraud detection rate than similar works in this field. The proposed technique successfully identifies diverse forms of fraudulent activities resulting from unauthorized energy usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信