{"title":"进退两难的工具包:超越负责任的AI/ML的去偏见和公平公式","authors":"Andr'es Dom'inguez Hern'andez, Vassilis Galanos","doi":"10.1109/ISTAS55053.2022.10227133","DOIUrl":null,"url":null,"abstract":"Approaches to fair and ethical AI have recently fell under the scrutiny of the emerging, chiefly qualitative, field of critical data studies, placing emphasis on the lack of sensitivity to context and complex social phenomena of such interventions. We employ some of these lessons to introduce a tripartite decision-making toolkit, informed by dilemmas encountered in the pursuit of responsible AI/ML. These are: (a) the opportunity dilemma between the availability of data shaping problem statements versus problem statements shaping data collection and processing; (b) the scale dilemma between scalability and contextualizability; and (c) the epistemic dilemma between the pragmatic technical objectivism and the reflexive relativism in acknowledging the social. This paper advocates for a situated reasoning and creative engagement with the dilemmas surrounding responsible algorithmic/data-driven systems, and going beyond the formulaic bias elimination and ethics operationalization narratives found in the fair-AI literature.","PeriodicalId":180420,"journal":{"name":"2022 IEEE International Symposium on Technology and Society (ISTAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A toolkit of dilemmas: Beyond debiasing and fairness formulas for responsible AI/ML\",\"authors\":\"Andr'es Dom'inguez Hern'andez, Vassilis Galanos\",\"doi\":\"10.1109/ISTAS55053.2022.10227133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approaches to fair and ethical AI have recently fell under the scrutiny of the emerging, chiefly qualitative, field of critical data studies, placing emphasis on the lack of sensitivity to context and complex social phenomena of such interventions. We employ some of these lessons to introduce a tripartite decision-making toolkit, informed by dilemmas encountered in the pursuit of responsible AI/ML. These are: (a) the opportunity dilemma between the availability of data shaping problem statements versus problem statements shaping data collection and processing; (b) the scale dilemma between scalability and contextualizability; and (c) the epistemic dilemma between the pragmatic technical objectivism and the reflexive relativism in acknowledging the social. This paper advocates for a situated reasoning and creative engagement with the dilemmas surrounding responsible algorithmic/data-driven systems, and going beyond the formulaic bias elimination and ethics operationalization narratives found in the fair-AI literature.\",\"PeriodicalId\":180420,\"journal\":{\"name\":\"2022 IEEE International Symposium on Technology and Society (ISTAS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Technology and Society (ISTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTAS55053.2022.10227133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Technology and Society (ISTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTAS55053.2022.10227133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A toolkit of dilemmas: Beyond debiasing and fairness formulas for responsible AI/ML
Approaches to fair and ethical AI have recently fell under the scrutiny of the emerging, chiefly qualitative, field of critical data studies, placing emphasis on the lack of sensitivity to context and complex social phenomena of such interventions. We employ some of these lessons to introduce a tripartite decision-making toolkit, informed by dilemmas encountered in the pursuit of responsible AI/ML. These are: (a) the opportunity dilemma between the availability of data shaping problem statements versus problem statements shaping data collection and processing; (b) the scale dilemma between scalability and contextualizability; and (c) the epistemic dilemma between the pragmatic technical objectivism and the reflexive relativism in acknowledging the social. This paper advocates for a situated reasoning and creative engagement with the dilemmas surrounding responsible algorithmic/data-driven systems, and going beyond the formulaic bias elimination and ethics operationalization narratives found in the fair-AI literature.