基于轮廓的图像分类与检索特征提取

Julio C. Figueiredo, F. Neto, I. C. Paula
{"title":"基于轮廓的图像分类与检索特征提取","authors":"Julio C. Figueiredo, F. Neto, I. C. Paula","doi":"10.1109/SCCC.2016.7836058","DOIUrl":null,"url":null,"abstract":"We propose a feature extraction scheme for application on image classification and retrieval that is based on shapes' contours, while discarding information within the boundaries such as colour and texture. The center of mass and opposite distances are calculated for every contour pixel and used to measure distances between pairs of images that are invariant to common transformations. We apply the k-nearest neighbours (k-NN) algorithm to classify/retrieve a query image according to the k closest images' classes. The resulting success rates were computed for the Kimia, MPEG-7 and Tari image data sets and compared with those of other techniques.","PeriodicalId":432676,"journal":{"name":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Contour-based feature extraction for image classification and retrieval\",\"authors\":\"Julio C. Figueiredo, F. Neto, I. C. Paula\",\"doi\":\"10.1109/SCCC.2016.7836058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a feature extraction scheme for application on image classification and retrieval that is based on shapes' contours, while discarding information within the boundaries such as colour and texture. The center of mass and opposite distances are calculated for every contour pixel and used to measure distances between pairs of images that are invariant to common transformations. We apply the k-nearest neighbours (k-NN) algorithm to classify/retrieve a query image according to the k closest images' classes. The resulting success rates were computed for the Kimia, MPEG-7 and Tari image data sets and compared with those of other techniques.\",\"PeriodicalId\":432676,\"journal\":{\"name\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2016.7836058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2016.7836058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种基于形状轮廓的特征提取方案,用于图像分类和检索,同时丢弃边界内的颜色和纹理等信息。计算每个轮廓像素的质心和相对距离,并用于测量对普通变换不变的图像对之间的距离。我们应用k近邻(k- nn)算法根据最接近的k个图像的类对查询图像进行分类/检索。计算了Kimia、MPEG-7和Tari图像数据集的成功率,并与其他技术的成功率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour-based feature extraction for image classification and retrieval
We propose a feature extraction scheme for application on image classification and retrieval that is based on shapes' contours, while discarding information within the boundaries such as colour and texture. The center of mass and opposite distances are calculated for every contour pixel and used to measure distances between pairs of images that are invariant to common transformations. We apply the k-nearest neighbours (k-NN) algorithm to classify/retrieve a query image according to the k closest images' classes. The resulting success rates were computed for the Kimia, MPEG-7 and Tari image data sets and compared with those of other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信