{"title":"硅衬底纳米级量子点有机发光器件的制备","authors":"D. H. Emon, H. Kim","doi":"10.1109/NANO.2017.8117316","DOIUrl":null,"url":null,"abstract":"We report a quantum-dot (QD) organic light-emitting diode (OLED) structure formed on Si substrate scaled down to nanometer dimensions. In our proposed OLED, the junction area is defined by a non-lithographically patterned oxide layer on Si substrate. We utilized gold nanoparticles as oxygen barrier mask during thermal oxidation of Si. Previously, we demonstrated a carrier injection mechanism originating from the two-dimensional electron gas (2DEG) system available at the SiO2/Si interface [4]. The electron injection, as well as the resulting luminescence, is found to occur predominantly at the junction's periphery, not area, resulting in a low turn-on voltage (∼1–2 V). An efficient way to increase total device perimeter is to reduce the size of the device. In this report, we demonstrated a cost-effective non-lithographic method to fabricate nanoscale OLEDs with a dense distribution to increase total device perimeter without requiring extra substrate area.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of nanoscale quantum-dot organic light-emitting devices on Si substrate\",\"authors\":\"D. H. Emon, H. Kim\",\"doi\":\"10.1109/NANO.2017.8117316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a quantum-dot (QD) organic light-emitting diode (OLED) structure formed on Si substrate scaled down to nanometer dimensions. In our proposed OLED, the junction area is defined by a non-lithographically patterned oxide layer on Si substrate. We utilized gold nanoparticles as oxygen barrier mask during thermal oxidation of Si. Previously, we demonstrated a carrier injection mechanism originating from the two-dimensional electron gas (2DEG) system available at the SiO2/Si interface [4]. The electron injection, as well as the resulting luminescence, is found to occur predominantly at the junction's periphery, not area, resulting in a low turn-on voltage (∼1–2 V). An efficient way to increase total device perimeter is to reduce the size of the device. In this report, we demonstrated a cost-effective non-lithographic method to fabricate nanoscale OLEDs with a dense distribution to increase total device perimeter without requiring extra substrate area.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of nanoscale quantum-dot organic light-emitting devices on Si substrate
We report a quantum-dot (QD) organic light-emitting diode (OLED) structure formed on Si substrate scaled down to nanometer dimensions. In our proposed OLED, the junction area is defined by a non-lithographically patterned oxide layer on Si substrate. We utilized gold nanoparticles as oxygen barrier mask during thermal oxidation of Si. Previously, we demonstrated a carrier injection mechanism originating from the two-dimensional electron gas (2DEG) system available at the SiO2/Si interface [4]. The electron injection, as well as the resulting luminescence, is found to occur predominantly at the junction's periphery, not area, resulting in a low turn-on voltage (∼1–2 V). An efficient way to increase total device perimeter is to reduce the size of the device. In this report, we demonstrated a cost-effective non-lithographic method to fabricate nanoscale OLEDs with a dense distribution to increase total device perimeter without requiring extra substrate area.