基于大数据挖掘的配电网运维管理与决策分析

X. Zhao, Linhuan Luo, Guolong Ma, Z. Cai, Zhanji Gu, Qinghai Wang
{"title":"基于大数据挖掘的配电网运维管理与决策分析","authors":"X. Zhao, Linhuan Luo, Guolong Ma, Z. Cai, Zhanji Gu, Qinghai Wang","doi":"10.1109/POWERCON.2018.8601825","DOIUrl":null,"url":null,"abstract":"The operation and maintenance management of the distribution network (DN) mainly includes fault analysis, active early-warning and differentiated operation and maintenance. In the context of multi-time-scale and multi-spatial-temporal data in DN, this paper deals with the application of data mining for distribution network operation and maintenance management. In the paper, the one-dimensional fault feature is extracted from fault information by K-means clustering algorithm. Then, we employed Apriori algorithm to mine association rules of different failure modes and establish key performance matrix. The spatial-temporal characteristics are analyzed based on high-dimensional random matrix theory (RMT). Afterwards, one-dimensional and multi-dimensional fault features are combined based on D-S evidence theory so that the fault diagnosis criteria of DN is obtained. At the same time, comprehensively considering the DN operating state and the variation for power users, health index and importance index of equipment are established, which could help to significantly reduce the decision-making risk of DN operation and maintenance. The result of simulation proves the effectiveness of the proposed method.","PeriodicalId":260947,"journal":{"name":"2018 International Conference on Power System Technology (POWERCON)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation and Maintenance Management and Decision Analysis in Distribution Network Based on Big Data Mining\",\"authors\":\"X. Zhao, Linhuan Luo, Guolong Ma, Z. Cai, Zhanji Gu, Qinghai Wang\",\"doi\":\"10.1109/POWERCON.2018.8601825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation and maintenance management of the distribution network (DN) mainly includes fault analysis, active early-warning and differentiated operation and maintenance. In the context of multi-time-scale and multi-spatial-temporal data in DN, this paper deals with the application of data mining for distribution network operation and maintenance management. In the paper, the one-dimensional fault feature is extracted from fault information by K-means clustering algorithm. Then, we employed Apriori algorithm to mine association rules of different failure modes and establish key performance matrix. The spatial-temporal characteristics are analyzed based on high-dimensional random matrix theory (RMT). Afterwards, one-dimensional and multi-dimensional fault features are combined based on D-S evidence theory so that the fault diagnosis criteria of DN is obtained. At the same time, comprehensively considering the DN operating state and the variation for power users, health index and importance index of equipment are established, which could help to significantly reduce the decision-making risk of DN operation and maintenance. The result of simulation proves the effectiveness of the proposed method.\",\"PeriodicalId\":260947,\"journal\":{\"name\":\"2018 International Conference on Power System Technology (POWERCON)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2018.8601825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2018.8601825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

配电网的运维管理主要包括故障分析、主动预警和差别化运维。针对分布式电网中多时间尺度、多时空数据的情况,研究了数据挖掘在配电网运维管理中的应用。本文采用k均值聚类算法从故障信息中提取一维故障特征。然后利用Apriori算法挖掘不同失效模式的关联规则,建立关键性能矩阵。基于高维随机矩阵理论(RMT)分析了其时空特征。然后,基于D-S证据理论,将一维和多维故障特征相结合,得到DN的故障诊断标准。同时,综合考虑电网运行状态和电力用户的变化,建立了设备健康指数和重要指数,有助于显著降低电网运维决策风险。仿真结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operation and Maintenance Management and Decision Analysis in Distribution Network Based on Big Data Mining
The operation and maintenance management of the distribution network (DN) mainly includes fault analysis, active early-warning and differentiated operation and maintenance. In the context of multi-time-scale and multi-spatial-temporal data in DN, this paper deals with the application of data mining for distribution network operation and maintenance management. In the paper, the one-dimensional fault feature is extracted from fault information by K-means clustering algorithm. Then, we employed Apriori algorithm to mine association rules of different failure modes and establish key performance matrix. The spatial-temporal characteristics are analyzed based on high-dimensional random matrix theory (RMT). Afterwards, one-dimensional and multi-dimensional fault features are combined based on D-S evidence theory so that the fault diagnosis criteria of DN is obtained. At the same time, comprehensively considering the DN operating state and the variation for power users, health index and importance index of equipment are established, which could help to significantly reduce the decision-making risk of DN operation and maintenance. The result of simulation proves the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信