离散微气泡在透明多孔介质中流动

Y. Ma, G. Yan, A. Scheuermann, Ling Li, S. Galindo‐Torres, D. Bringemeier
{"title":"离散微气泡在透明多孔介质中流动","authors":"Y. Ma, G. Yan, A. Scheuermann, Ling Li, S. Galindo‐Torres, D. Bringemeier","doi":"10.1201/B17034-177","DOIUrl":null,"url":null,"abstract":"The coal seam gas and underground coal gasification industry has caused concerns with the risk of potential groundwater contamination. Gases leaked from coal seams are thought to be a source of groundwater pollution. However, the basic principles and controlling parameters for gases seepage from deep ground formations to the surface are not fully understood. Microbubble transport, as a possible mechanism for gases transport in the subsurface, is investigated here through a laboratory-scale experiment. Microbubbles were generated from a bubble diffuser and released into a 2D artificial transparent porous medium. The point source of bubble injection was used to simulate the release of gases from geological faults/fractures. The medium's transparency enabled a clear visualization of the bubble pathways. Images captured by cameras were used to facilitate analyses on the bubble transport behavior affected by advection and dispersion.","PeriodicalId":294644,"journal":{"name":"Unsaturated Soils: Research & Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discrete microbubbles flow in transparent porous media\",\"authors\":\"Y. Ma, G. Yan, A. Scheuermann, Ling Li, S. Galindo‐Torres, D. Bringemeier\",\"doi\":\"10.1201/B17034-177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coal seam gas and underground coal gasification industry has caused concerns with the risk of potential groundwater contamination. Gases leaked from coal seams are thought to be a source of groundwater pollution. However, the basic principles and controlling parameters for gases seepage from deep ground formations to the surface are not fully understood. Microbubble transport, as a possible mechanism for gases transport in the subsurface, is investigated here through a laboratory-scale experiment. Microbubbles were generated from a bubble diffuser and released into a 2D artificial transparent porous medium. The point source of bubble injection was used to simulate the release of gases from geological faults/fractures. The medium's transparency enabled a clear visualization of the bubble pathways. Images captured by cameras were used to facilitate analyses on the bubble transport behavior affected by advection and dispersion.\",\"PeriodicalId\":294644,\"journal\":{\"name\":\"Unsaturated Soils: Research & Applications\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unsaturated Soils: Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/B17034-177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unsaturated Soils: Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/B17034-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

煤层气和地下煤气化行业引起了人们对潜在地下水污染风险的担忧。煤层泄漏的气体被认为是地下水污染的一个来源。然而,气体从地下深层向地表渗流的基本原理和控制参数还不完全清楚。本文通过实验研究了微泡输运作为气体在地下输运的一种可能机制。微气泡由气泡扩散器产生并释放到二维人工透明多孔介质中。利用气泡注入点源模拟地质断层/裂缝中气体的释放。该介质的透明性使得气泡路径清晰可见。利用相机拍摄的图像,分析了平流和弥散对气泡输运行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete microbubbles flow in transparent porous media
The coal seam gas and underground coal gasification industry has caused concerns with the risk of potential groundwater contamination. Gases leaked from coal seams are thought to be a source of groundwater pollution. However, the basic principles and controlling parameters for gases seepage from deep ground formations to the surface are not fully understood. Microbubble transport, as a possible mechanism for gases transport in the subsurface, is investigated here through a laboratory-scale experiment. Microbubbles were generated from a bubble diffuser and released into a 2D artificial transparent porous medium. The point source of bubble injection was used to simulate the release of gases from geological faults/fractures. The medium's transparency enabled a clear visualization of the bubble pathways. Images captured by cameras were used to facilitate analyses on the bubble transport behavior affected by advection and dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信