移动云计算的自适应计算卸载方法

Archana Kero, Abhirup Khanna, Devendra Kumar, A. Agarwal
{"title":"移动云计算的自适应计算卸载方法","authors":"Archana Kero, Abhirup Khanna, Devendra Kumar, A. Agarwal","doi":"10.4018/IJITWE.2019040104","DOIUrl":null,"url":null,"abstract":"The widespread acceptability of mobile devices in present times have caused their applications to be increasingly rich in terms of the functionalities they provide to the end users. Such applications might be very prevalent among users but the execution results in dissipating many of the device end resources. Mobile cloud computing (MCC) has a solution to this problem by offloading certain parts of the application to cloud. At the first place, one might find computation offloading quite promising in terms of saving device end resources but eventually may result in being the other way around if performed in a static manner. Frequent changes in device end resources and computing environment variables may lead to a reduction in the efficiency of offloading techniques and even cause a drop in the quality of service for applications involving the use of real-time information. In order to overcome this problem, the authors propose an adaptive computation offloading framework for data stream applications wherein applications are partitioned dynamically followed by being offloaded depending upon the device end parameters, network conditions, and cloud resources. The article also talks about the proposed algorithm that depicts the workflow of the offloading model. The proposed model is simulated using the CloudSim simulator. In the end, the authors illustrate the working of the proposed system along with the simulated results.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Adaptive Approach Towards Computation Offloading for Mobile Cloud Computing\",\"authors\":\"Archana Kero, Abhirup Khanna, Devendra Kumar, A. Agarwal\",\"doi\":\"10.4018/IJITWE.2019040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread acceptability of mobile devices in present times have caused their applications to be increasingly rich in terms of the functionalities they provide to the end users. Such applications might be very prevalent among users but the execution results in dissipating many of the device end resources. Mobile cloud computing (MCC) has a solution to this problem by offloading certain parts of the application to cloud. At the first place, one might find computation offloading quite promising in terms of saving device end resources but eventually may result in being the other way around if performed in a static manner. Frequent changes in device end resources and computing environment variables may lead to a reduction in the efficiency of offloading techniques and even cause a drop in the quality of service for applications involving the use of real-time information. In order to overcome this problem, the authors propose an adaptive computation offloading framework for data stream applications wherein applications are partitioned dynamically followed by being offloaded depending upon the device end parameters, network conditions, and cloud resources. The article also talks about the proposed algorithm that depicts the workflow of the offloading model. The proposed model is simulated using the CloudSim simulator. In the end, the authors illustrate the working of the proposed system along with the simulated results.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJITWE.2019040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2019040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在当今时代,移动设备的广泛可接受性使其应用程序在提供给最终用户的功能方面变得越来越丰富。这样的应用程序可能在用户中非常普遍,但执行会导致消耗许多设备端资源。移动云计算(MCC)通过将应用程序的某些部分卸载到云端来解决这个问题。首先,人们可能会发现计算卸载在节省设备端资源方面非常有前途,但如果以静态方式执行,最终可能会导致相反的结果。设备端资源和计算环境变量的频繁变化可能导致卸载技术的效率降低,甚至导致涉及使用实时信息的应用程序的服务质量下降。为了克服这个问题,作者提出了一个数据流应用程序的自适应计算卸载框架,其中应用程序动态分区,然后根据设备端参数,网络条件和云资源进行卸载。本文还讨论了所提出的描述卸载模型工作流程的算法。使用CloudSim模拟器对所提出的模型进行了仿真。最后,结合仿真结果对系统的工作原理进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Approach Towards Computation Offloading for Mobile Cloud Computing
The widespread acceptability of mobile devices in present times have caused their applications to be increasingly rich in terms of the functionalities they provide to the end users. Such applications might be very prevalent among users but the execution results in dissipating many of the device end resources. Mobile cloud computing (MCC) has a solution to this problem by offloading certain parts of the application to cloud. At the first place, one might find computation offloading quite promising in terms of saving device end resources but eventually may result in being the other way around if performed in a static manner. Frequent changes in device end resources and computing environment variables may lead to a reduction in the efficiency of offloading techniques and even cause a drop in the quality of service for applications involving the use of real-time information. In order to overcome this problem, the authors propose an adaptive computation offloading framework for data stream applications wherein applications are partitioned dynamically followed by being offloaded depending upon the device end parameters, network conditions, and cloud resources. The article also talks about the proposed algorithm that depicts the workflow of the offloading model. The proposed model is simulated using the CloudSim simulator. In the end, the authors illustrate the working of the proposed system along with the simulated results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信