一种适用于55纳米SiGe-BiCMOS高信号功率应用的具有轨模掩蔽的6.4 - 32 GS/s跟踪保持放大器

P. Thomas, M. Buck, M. Grözing, M. Berroth, J. Rauscher, M. Epp, M. Schlumpp
{"title":"一种适用于55纳米SiGe-BiCMOS高信号功率应用的具有轨模掩蔽的6.4 - 32 GS/s跟踪保持放大器","authors":"P. Thomas, M. Buck, M. Grözing, M. Berroth, J. Rauscher, M. Epp, M. Schlumpp","doi":"10.1109/BCICTS.2018.8550911","DOIUrl":null,"url":null,"abstract":"This paper presents a track-and-hold amplifier based on a switched emitter follower with demonstrated sampling rates from 6.4 GS/s to 32 GS/s and an analog bandwidth of up to 19 GHz in the hold-mode. Linearity measurements in the first Nyquist zone show 4.9 - 7.9 bits of accuracy for the highest sampling rate, more than 6 bits for up to 25.6 GS/s, more than 7 bits for up to 12.8 GS/s and a maximum of 8.9 bits at 6.4 GS/s, all calculated from the SNDR values. Most comparable circuits use only the THD value to calculate ENOBs, since achieving high SNR is difficult for low signal power circuits. The measurement results of the proposed track-and-hold amplifier were obtained at a high differential input voltage swing of 2.0 Vpp while they can reach even higher values at 1.0 Vpp. The 1-dB compression point is even higher, at 18.9 dBm. This makes the circuit suitable for high signal or noise power applications that demand high data rates and high linearity at the same time, including radio frequency instrumentation and receivers in radar and satellite communications. Designed as the front-end of a folding ADC, an additional benefit is the track-mode masking, recovering the common-mode level of the outputs during the input track-mode, which can be important when working with high input voltages. The third-order intercept point of 27.4 dBm at 25.6 GS/s and up to 34.7 dBm at 6.4 GS/s shows the unique combination of high signal power and high linearity in a sampling circuit above 10 GHz. This is made possible by the modern 55 nm SiGe-BiCMOS technology with high-performance HBTs.","PeriodicalId":272808,"journal":{"name":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Adaptable 6.4 - 32 GS/s Track-and-Hold Amplifier with Track-Mode Masking for High Signal Power Applications in 55 nm SiGe-BiCMOS\",\"authors\":\"P. Thomas, M. Buck, M. Grözing, M. Berroth, J. Rauscher, M. Epp, M. Schlumpp\",\"doi\":\"10.1109/BCICTS.2018.8550911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a track-and-hold amplifier based on a switched emitter follower with demonstrated sampling rates from 6.4 GS/s to 32 GS/s and an analog bandwidth of up to 19 GHz in the hold-mode. Linearity measurements in the first Nyquist zone show 4.9 - 7.9 bits of accuracy for the highest sampling rate, more than 6 bits for up to 25.6 GS/s, more than 7 bits for up to 12.8 GS/s and a maximum of 8.9 bits at 6.4 GS/s, all calculated from the SNDR values. Most comparable circuits use only the THD value to calculate ENOBs, since achieving high SNR is difficult for low signal power circuits. The measurement results of the proposed track-and-hold amplifier were obtained at a high differential input voltage swing of 2.0 Vpp while they can reach even higher values at 1.0 Vpp. The 1-dB compression point is even higher, at 18.9 dBm. This makes the circuit suitable for high signal or noise power applications that demand high data rates and high linearity at the same time, including radio frequency instrumentation and receivers in radar and satellite communications. Designed as the front-end of a folding ADC, an additional benefit is the track-mode masking, recovering the common-mode level of the outputs during the input track-mode, which can be important when working with high input voltages. The third-order intercept point of 27.4 dBm at 25.6 GS/s and up to 34.7 dBm at 6.4 GS/s shows the unique combination of high signal power and high linearity in a sampling circuit above 10 GHz. This is made possible by the modern 55 nm SiGe-BiCMOS technology with high-performance HBTs.\",\"PeriodicalId\":272808,\"journal\":{\"name\":\"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCICTS.2018.8550911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS.2018.8550911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于开关发射极跟随器的跟踪保持放大器,在保持模式下,其采样率为6.4 ~ 32gs /s,模拟带宽高达19ghz。第一奈奎斯特区的线性测量结果显示,最高采样率的精度为4.9 ~ 7.9位,最高采样率为25.6 GS/s时精度大于6位,最高采样率为12.8 GS/s时精度大于7位,最高采样率为6.4 GS/s时精度为8.9位。大多数可比较的电路只使用THD值来计算ENOBs,因为对于低信号功率电路实现高信噪比是困难的。所提出的跟踪保持放大器的测量结果在2.0 Vpp的高差分输入电压摆幅下获得,而在1.0 Vpp时可以达到更高的值。1db压缩点甚至更高,为18.9 dBm。这使得该电路适用于同时需要高数据速率和高线性度的高信号或噪声功率应用,包括雷达和卫星通信中的射频仪器和接收器。作为折叠式ADC的前端设计,另一个好处是轨道模式掩蔽,在输入轨道模式期间恢复输出的共模电平,这在高输入电压下工作时非常重要。在25.6 GS/s时,三阶截距点27.4 dBm,在6.4 GS/s时,三阶截距点高达34.7 dBm,这表明在10ghz以上的采样电路中,高信号功率和高线性度的独特结合。这是由现代55纳米SiGe-BiCMOS技术与高性能HBTs实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptable 6.4 - 32 GS/s Track-and-Hold Amplifier with Track-Mode Masking for High Signal Power Applications in 55 nm SiGe-BiCMOS
This paper presents a track-and-hold amplifier based on a switched emitter follower with demonstrated sampling rates from 6.4 GS/s to 32 GS/s and an analog bandwidth of up to 19 GHz in the hold-mode. Linearity measurements in the first Nyquist zone show 4.9 - 7.9 bits of accuracy for the highest sampling rate, more than 6 bits for up to 25.6 GS/s, more than 7 bits for up to 12.8 GS/s and a maximum of 8.9 bits at 6.4 GS/s, all calculated from the SNDR values. Most comparable circuits use only the THD value to calculate ENOBs, since achieving high SNR is difficult for low signal power circuits. The measurement results of the proposed track-and-hold amplifier were obtained at a high differential input voltage swing of 2.0 Vpp while they can reach even higher values at 1.0 Vpp. The 1-dB compression point is even higher, at 18.9 dBm. This makes the circuit suitable for high signal or noise power applications that demand high data rates and high linearity at the same time, including radio frequency instrumentation and receivers in radar and satellite communications. Designed as the front-end of a folding ADC, an additional benefit is the track-mode masking, recovering the common-mode level of the outputs during the input track-mode, which can be important when working with high input voltages. The third-order intercept point of 27.4 dBm at 25.6 GS/s and up to 34.7 dBm at 6.4 GS/s shows the unique combination of high signal power and high linearity in a sampling circuit above 10 GHz. This is made possible by the modern 55 nm SiGe-BiCMOS technology with high-performance HBTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信