元分析中的固定效应和混合效应模型

S. Konstantopoulos
{"title":"元分析中的固定效应和混合效应模型","authors":"S. Konstantopoulos","doi":"10.2139/ssrn.919993","DOIUrl":null,"url":null,"abstract":"The last three decades the accumulation of quantitative research evidence has led to the development of systematic methods for combining information across samples of related studies. Although a few methods have been described for accumulating research evidence over time, meta-analysis is widely considered as the most appropriate statistical method for combining evidence across studies. This study reviews fixed and mixed effects models for univariate and multivariate meta-analysis. In addition, the study discusses specialized software that facilitates the statistical analysis of meta-analytic data.","PeriodicalId":261871,"journal":{"name":"IZA: General Labor Economics (Topic)","volume":"27 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Fixed and Mixed Effects Models in Meta-Analysis\",\"authors\":\"S. Konstantopoulos\",\"doi\":\"10.2139/ssrn.919993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last three decades the accumulation of quantitative research evidence has led to the development of systematic methods for combining information across samples of related studies. Although a few methods have been described for accumulating research evidence over time, meta-analysis is widely considered as the most appropriate statistical method for combining evidence across studies. This study reviews fixed and mixed effects models for univariate and multivariate meta-analysis. In addition, the study discusses specialized software that facilitates the statistical analysis of meta-analytic data.\",\"PeriodicalId\":261871,\"journal\":{\"name\":\"IZA: General Labor Economics (Topic)\",\"volume\":\"27 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZA: General Labor Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.919993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZA: General Labor Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.919993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在过去的三十年中,定量研究证据的积累导致了系统方法的发展,用于结合相关研究样本的信息。虽然有几种方法被描述为随着时间的推移积累研究证据,但元分析被广泛认为是整合研究证据的最合适的统计方法。本研究回顾了单变量和多变量元分析的固定效应和混合效应模型。此外,本研究还讨论了便于元分析数据统计分析的专用软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed and Mixed Effects Models in Meta-Analysis
The last three decades the accumulation of quantitative research evidence has led to the development of systematic methods for combining information across samples of related studies. Although a few methods have been described for accumulating research evidence over time, meta-analysis is widely considered as the most appropriate statistical method for combining evidence across studies. This study reviews fixed and mixed effects models for univariate and multivariate meta-analysis. In addition, the study discusses specialized software that facilitates the statistical analysis of meta-analytic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信