{"title":"用于高性能应用的新型sti型FinFET器件结构","authors":"Jyi-Tsong Lin, Po-Hsieh Lin, Y. Eng","doi":"10.1109/ISNE.2010.5669142","DOIUrl":null,"url":null,"abstract":"A new STI-type FinFET structure with its body region been connected is demonstrated and characterized by using three-dimensional (3-D) numerical simulations. From the simulation results, the STI-type FinFET shows that the short-channel effects (SCEs) and the off-state leakage current are proved to be reduced because the threshold voltage (VTH) roll-off and the drain-induced barrier lowering (DIBL) are well controlled. For same reason, this new device also exhibits a higher transconductance (GM) and its GD also maintains a good electrical performance with no kink effect compared with the conventional FinFET. With extra body region under the gate layer, the lattice temperature is decreased, and a good capability of alleviating the thermal instability is also obtained.","PeriodicalId":412093,"journal":{"name":"2010 International Symposium on Next Generation Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new STI-type FinFET device structure for high-performance applications\",\"authors\":\"Jyi-Tsong Lin, Po-Hsieh Lin, Y. Eng\",\"doi\":\"10.1109/ISNE.2010.5669142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new STI-type FinFET structure with its body region been connected is demonstrated and characterized by using three-dimensional (3-D) numerical simulations. From the simulation results, the STI-type FinFET shows that the short-channel effects (SCEs) and the off-state leakage current are proved to be reduced because the threshold voltage (VTH) roll-off and the drain-induced barrier lowering (DIBL) are well controlled. For same reason, this new device also exhibits a higher transconductance (GM) and its GD also maintains a good electrical performance with no kink effect compared with the conventional FinFET. With extra body region under the gate layer, the lattice temperature is decreased, and a good capability of alleviating the thermal instability is also obtained.\",\"PeriodicalId\":412093,\"journal\":{\"name\":\"2010 International Symposium on Next Generation Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Symposium on Next Generation Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2010.5669142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Next Generation Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2010.5669142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new STI-type FinFET device structure for high-performance applications
A new STI-type FinFET structure with its body region been connected is demonstrated and characterized by using three-dimensional (3-D) numerical simulations. From the simulation results, the STI-type FinFET shows that the short-channel effects (SCEs) and the off-state leakage current are proved to be reduced because the threshold voltage (VTH) roll-off and the drain-induced barrier lowering (DIBL) are well controlled. For same reason, this new device also exhibits a higher transconductance (GM) and its GD also maintains a good electrical performance with no kink effect compared with the conventional FinFET. With extra body region under the gate layer, the lattice temperature is decreased, and a good capability of alleviating the thermal instability is also obtained.