一种用于神经形态芯片的吞吐量按需地址事件发送器

K. Boahen
{"title":"一种用于神经形态芯片的吞吐量按需地址事件发送器","authors":"K. Boahen","doi":"10.1109/ARVLSI.1999.756038","DOIUrl":null,"url":null,"abstract":"The author presents a scalable 2D address-event transmitter interface designed to take advantage of the high integration densities available with advanced submicron technology. To sustain throughput, it exploits the linear increase in the number of active neurons per row with array size, instead of counting on a linear increase in the unit-current/unit-capacitance ratio, as existing designs do. The author synthesizes an asynchronous implementation starting from a high-level specification, and presents test results from a 104/spl times/96-neuron chip fabricated in a 1.2 /spl mu/m CMOS process. Reading out the state of all neurons in a selected row in parallel, and sending their spikes in a tight burst of events, yields cycle times between 40 to 70 ns-six to ten times shorter than the 420 ns minimum cycle time reported in earlier work.","PeriodicalId":358015,"journal":{"name":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"A throughput-on-demand address-event transmitter for neuromorphic chips\",\"authors\":\"K. Boahen\",\"doi\":\"10.1109/ARVLSI.1999.756038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author presents a scalable 2D address-event transmitter interface designed to take advantage of the high integration densities available with advanced submicron technology. To sustain throughput, it exploits the linear increase in the number of active neurons per row with array size, instead of counting on a linear increase in the unit-current/unit-capacitance ratio, as existing designs do. The author synthesizes an asynchronous implementation starting from a high-level specification, and presents test results from a 104/spl times/96-neuron chip fabricated in a 1.2 /spl mu/m CMOS process. Reading out the state of all neurons in a selected row in parallel, and sending their spikes in a tight burst of events, yields cycle times between 40 to 70 ns-six to ten times shorter than the 420 ns minimum cycle time reported in earlier work.\",\"PeriodicalId\":358015,\"journal\":{\"name\":\"Proceedings 20th Anniversary Conference on Advanced Research in VLSI\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 20th Anniversary Conference on Advanced Research in VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARVLSI.1999.756038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARVLSI.1999.756038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

作者提出了一个可扩展的二维地址-事件发送器接口,旨在利用先进亚微米技术的高集成密度。为了维持吞吐量,它利用了每行活动神经元数量随阵列大小的线性增加,而不是像现有设计那样依赖于单位电流/单位电容比的线性增加。作者从高层次规范出发,综合了一种异步实现,并给出了以1.2 /spl μ m CMOS工艺制作的104/spl次/96神经元芯片的测试结果。在选定的一行中并行读出所有神经元的状态,并在一系列事件中发送它们的尖峰,产生的周期时间在40到70秒之间,比早期工作中报道的420秒的最小周期时间短6到10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A throughput-on-demand address-event transmitter for neuromorphic chips
The author presents a scalable 2D address-event transmitter interface designed to take advantage of the high integration densities available with advanced submicron technology. To sustain throughput, it exploits the linear increase in the number of active neurons per row with array size, instead of counting on a linear increase in the unit-current/unit-capacitance ratio, as existing designs do. The author synthesizes an asynchronous implementation starting from a high-level specification, and presents test results from a 104/spl times/96-neuron chip fabricated in a 1.2 /spl mu/m CMOS process. Reading out the state of all neurons in a selected row in parallel, and sending their spikes in a tight burst of events, yields cycle times between 40 to 70 ns-six to ten times shorter than the 420 ns minimum cycle time reported in earlier work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信