{"title":"利用学习机器与数据科学方法进行分析和预测销售数据","authors":"Ferdy Riza","doi":"10.47709/dsi.v1i2.1308","DOIUrl":null,"url":null,"abstract":"Pendekatan Data Science (ilmu data) memberi peluang besar untuk menggunakan data history dan mengubahnya menjadi wawasan yang berguna untuk membangun model prediksi penjualan masa depan. akan tetapi, model prediksi membutuhkan analisis data tertentu untuk menghasilkan model yang kuat, termasuk jumlah pelanggan, jumlah pelanggan yang hilang, tingkat penjualan rata-rata serta kecenderungan musiman. Makalah ini menganalisis data penjualan menggunakan kerangka kerja ilmu data dengan desain sesuai prinsip CRIS-DM yang terdiri dari tahapan pemahaman bisnis, pemahaman data, persiapan data, pemodelan, evaluasi, dan penerapan. Pemodelan digunakan algoritma Machine Learning untuk memprediksi penjualan di masa depan yang hasil kinerjanya dievaluasi dengan RMSE, MEA dan R^2. Berdasarkan hasil pengujian algoritma XGBoost dan LightGBM menghasilkan nilai R^2 mencapai 60% dengan tingkat kesalahan deteksi terendah dibandingkan algoritma lainnya..","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analisis dan Prediksi Data Penjualan Menggunakan Machine Learning dengan Pendekatan Ilmu Data\",\"authors\":\"Ferdy Riza\",\"doi\":\"10.47709/dsi.v1i2.1308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pendekatan Data Science (ilmu data) memberi peluang besar untuk menggunakan data history dan mengubahnya menjadi wawasan yang berguna untuk membangun model prediksi penjualan masa depan. akan tetapi, model prediksi membutuhkan analisis data tertentu untuk menghasilkan model yang kuat, termasuk jumlah pelanggan, jumlah pelanggan yang hilang, tingkat penjualan rata-rata serta kecenderungan musiman. Makalah ini menganalisis data penjualan menggunakan kerangka kerja ilmu data dengan desain sesuai prinsip CRIS-DM yang terdiri dari tahapan pemahaman bisnis, pemahaman data, persiapan data, pemodelan, evaluasi, dan penerapan. Pemodelan digunakan algoritma Machine Learning untuk memprediksi penjualan di masa depan yang hasil kinerjanya dievaluasi dengan RMSE, MEA dan R^2. Berdasarkan hasil pengujian algoritma XGBoost dan LightGBM menghasilkan nilai R^2 mencapai 60% dengan tingkat kesalahan deteksi terendah dibandingkan algoritma lainnya..\",\"PeriodicalId\":155875,\"journal\":{\"name\":\"Data Sciences Indonesia (DSI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Sciences Indonesia (DSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47709/dsi.v1i2.1308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Sciences Indonesia (DSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/dsi.v1i2.1308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis dan Prediksi Data Penjualan Menggunakan Machine Learning dengan Pendekatan Ilmu Data
Pendekatan Data Science (ilmu data) memberi peluang besar untuk menggunakan data history dan mengubahnya menjadi wawasan yang berguna untuk membangun model prediksi penjualan masa depan. akan tetapi, model prediksi membutuhkan analisis data tertentu untuk menghasilkan model yang kuat, termasuk jumlah pelanggan, jumlah pelanggan yang hilang, tingkat penjualan rata-rata serta kecenderungan musiman. Makalah ini menganalisis data penjualan menggunakan kerangka kerja ilmu data dengan desain sesuai prinsip CRIS-DM yang terdiri dari tahapan pemahaman bisnis, pemahaman data, persiapan data, pemodelan, evaluasi, dan penerapan. Pemodelan digunakan algoritma Machine Learning untuk memprediksi penjualan di masa depan yang hasil kinerjanya dievaluasi dengan RMSE, MEA dan R^2. Berdasarkan hasil pengujian algoritma XGBoost dan LightGBM menghasilkan nilai R^2 mencapai 60% dengan tingkat kesalahan deteksi terendah dibandingkan algoritma lainnya..