基于多目标遗传算法和聚类的高阶估计的设计空间探索

L. G. A. Martins, E. Marques
{"title":"基于多目标遗传算法和聚类的高阶估计的设计空间探索","authors":"L. G. A. Martins, E. Marques","doi":"10.1109/FPL.2013.6645608","DOIUrl":null,"url":null,"abstract":"A desirable characteristic in high-level synthesis (HLS) is fast search and analysis of implementation alternatives with low or none intervention. This process is known as Design Space Exploration (DSE) and it requires an efficient search method. The employment of intelligent techniques like evolutionary algorithms has been investigated as an alternative to DSE. They turn possible to reduce the search time through selection of higher potential regions of the solution space. We propose here the development of a DSE approach based on a multiobjective evolutionary algorithm (MOEA) and machine learning techniques. It must be employed to indicate the code transformations and architectural parameters adopted in design solution. Furthermore, DSE will use a high-level estimator model to evaluate candidate solutions. Such model must be able to provide a good estimation of energy consumption and execution time at early stages of design.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design Space Exploration based on multiobjective genetic algorithms and clustering-based high-level estimation\",\"authors\":\"L. G. A. Martins, E. Marques\",\"doi\":\"10.1109/FPL.2013.6645608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A desirable characteristic in high-level synthesis (HLS) is fast search and analysis of implementation alternatives with low or none intervention. This process is known as Design Space Exploration (DSE) and it requires an efficient search method. The employment of intelligent techniques like evolutionary algorithms has been investigated as an alternative to DSE. They turn possible to reduce the search time through selection of higher potential regions of the solution space. We propose here the development of a DSE approach based on a multiobjective evolutionary algorithm (MOEA) and machine learning techniques. It must be employed to indicate the code transformations and architectural parameters adopted in design solution. Furthermore, DSE will use a high-level estimator model to evaluate candidate solutions. Such model must be able to provide a good estimation of energy consumption and execution time at early stages of design.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高级综合(HLS)的一个理想特性是在低干预或不干预的情况下快速搜索和分析实现方案。这个过程被称为设计空间探索(DSE),它需要一种有效的搜索方法。像进化算法这样的智能技术的使用已经被研究作为DSE的替代方案。通过选择解空间的高电位区域来减少搜索时间成为可能。我们在此提出了一种基于多目标进化算法(MOEA)和机器学习技术的DSE方法。必须使用它来指示设计解决方案中采用的代码转换和体系结构参数。此外,DSE将使用高级估计器模型来评估候选解决方案。这样的模型必须能够在设计的早期阶段提供对能耗和执行时间的良好估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Space Exploration based on multiobjective genetic algorithms and clustering-based high-level estimation
A desirable characteristic in high-level synthesis (HLS) is fast search and analysis of implementation alternatives with low or none intervention. This process is known as Design Space Exploration (DSE) and it requires an efficient search method. The employment of intelligent techniques like evolutionary algorithms has been investigated as an alternative to DSE. They turn possible to reduce the search time through selection of higher potential regions of the solution space. We propose here the development of a DSE approach based on a multiobjective evolutionary algorithm (MOEA) and machine learning techniques. It must be employed to indicate the code transformations and architectural parameters adopted in design solution. Furthermore, DSE will use a high-level estimator model to evaluate candidate solutions. Such model must be able to provide a good estimation of energy consumption and execution time at early stages of design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信