交换子群与代数

L. Greenberg
{"title":"交换子群与代数","authors":"L. Greenberg","doi":"10.6028/JRES.073B.025","DOIUrl":null,"url":null,"abstract":"Let Hand K be connected, Lie subgroups of a Lie group C. The group [H , K] , generated by all commutators hkh1k l(h€H, k€K) is arcwise connected. Therefore, by a theorem of Yamabe, LH, K] is a Lie subgroup. If ~, Sl' denote the Lie algebras of Hand K , respectively , then the Lie algebra of [H , K] is the s mallest algebra containing [~ , S\\\\ ], which is invariant underad~ andadSl'. An immediate consequ ence is that if Hand K are complex Lie subgroups, then [H , K] is also complex.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator groups and algebras\",\"authors\":\"L. Greenberg\",\"doi\":\"10.6028/JRES.073B.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Hand K be connected, Lie subgroups of a Lie group C. The group [H , K] , generated by all commutators hkh1k l(h€H, k€K) is arcwise connected. Therefore, by a theorem of Yamabe, LH, K] is a Lie subgroup. If ~, Sl' denote the Lie algebras of Hand K , respectively , then the Lie algebra of [H , K] is the s mallest algebra containing [~ , S\\\\\\\\ ], which is invariant underad~ andadSl'. An immediate consequ ence is that if Hand K are complex Lie subgroups, then [H , K] is also complex.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.073B.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.073B.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设手K是连通的,李群c的李子群,由所有换向子hkh1kl (H€H, K€K)生成的群[H, K]是弧连通的。因此,根据Yamabe定理,LH, K]是李子群。如果~,Sl'分别表示手K的李代数,则[H, K]的李代数是包含[~,s \\]的最小代数,它在~和adsl '下不变。一个直接的结果是,如果Hand K是复Lie子群,那么[H, K]也是复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutator groups and algebras
Let Hand K be connected, Lie subgroups of a Lie group C. The group [H , K] , generated by all commutators hkh1k l(h€H, k€K) is arcwise connected. Therefore, by a theorem of Yamabe, LH, K] is a Lie subgroup. If ~, Sl' denote the Lie algebras of Hand K , respectively , then the Lie algebra of [H , K] is the s mallest algebra containing [~ , S\\ ], which is invariant underad~ andadSl'. An immediate consequ ence is that if Hand K are complex Lie subgroups, then [H , K] is also complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信