基于隐马尔可夫模型的移动网络信道分类

Rafiaa Boujbel
{"title":"基于隐马尔可夫模型的移动网络信道分类","authors":"Rafiaa Boujbel","doi":"10.30958/ajte.2-1-3","DOIUrl":null,"url":null,"abstract":"In telecommunication networks, Key Performance Indicators (KPIs) are monitored to ensure higher Quality of Service (QoS) in communication networks. With the significant increase of data traffic on the mobile network, a detailed analysis of the transmission quality is becoming increasingly important. Existing classification approaches are widely considered to classify network traffic and not the channel in itself. The aim of this work is to implement a channel estimation tool based on hidden Markov models that is able to determine transmission channel characteristics in mobile radio receivers.","PeriodicalId":434189,"journal":{"name":"GI-Jahrestagung","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel classification with hidden Markov models in mobile networks\",\"authors\":\"Rafiaa Boujbel\",\"doi\":\"10.30958/ajte.2-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In telecommunication networks, Key Performance Indicators (KPIs) are monitored to ensure higher Quality of Service (QoS) in communication networks. With the significant increase of data traffic on the mobile network, a detailed analysis of the transmission quality is becoming increasingly important. Existing classification approaches are widely considered to classify network traffic and not the channel in itself. The aim of this work is to implement a channel estimation tool based on hidden Markov models that is able to determine transmission channel characteristics in mobile radio receivers.\",\"PeriodicalId\":434189,\"journal\":{\"name\":\"GI-Jahrestagung\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GI-Jahrestagung\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30958/ajte.2-1-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI-Jahrestagung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30958/ajte.2-1-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电信网络中,通过监控关键性能指标(kpi)来保证通信网络中更高的服务质量(QoS)。随着移动网络中数据流量的显著增加,对传输质量的详细分析变得越来越重要。现有的分类方法被广泛认为是对网络流量进行分类,而不是对信道本身进行分类。这项工作的目的是实现一个基于隐马尔可夫模型的信道估计工具,该工具能够确定移动无线电接收机的传输信道特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel classification with hidden Markov models in mobile networks
In telecommunication networks, Key Performance Indicators (KPIs) are monitored to ensure higher Quality of Service (QoS) in communication networks. With the significant increase of data traffic on the mobile network, a detailed analysis of the transmission quality is becoming increasingly important. Existing classification approaches are widely considered to classify network traffic and not the channel in itself. The aim of this work is to implement a channel estimation tool based on hidden Markov models that is able to determine transmission channel characteristics in mobile radio receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信