视网膜图像中的自动缺口检测

Mei Hui Tan, Ying Sun, S. Ong, Jiang Liu, M. Baskaran, T. Aung, T. Wong
{"title":"视网膜图像中的自动缺口检测","authors":"Mei Hui Tan, Ying Sun, S. Ong, Jiang Liu, M. Baskaran, T. Aung, T. Wong","doi":"10.1109/ISBI.2013.6556805","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to detect notching in the optic cup using retinal images. Optic cup notching is an important feature in differentiating normal from glaucomatous eyes. The proposed notching detection method comprises four steps: disc and vessel segmentation, vessel bend detection at key regions, feature points selection and automatic classification. The key step of vessel bend detection involves computing the local curvature of the vessels, then ranking them based on the angle of vessel bend and the local gradient in the neighborhood region. The algorithm was tested on a set of color fundus images and achieved a notching detection rate of 88.9%, a false alarm rate of 4.0%, and an overall accuracy of 95.4%.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Automatic notch detection in retinal images\",\"authors\":\"Mei Hui Tan, Ying Sun, S. Ong, Jiang Liu, M. Baskaran, T. Aung, T. Wong\",\"doi\":\"10.1109/ISBI.2013.6556805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to detect notching in the optic cup using retinal images. Optic cup notching is an important feature in differentiating normal from glaucomatous eyes. The proposed notching detection method comprises four steps: disc and vessel segmentation, vessel bend detection at key regions, feature points selection and automatic classification. The key step of vessel bend detection involves computing the local curvature of the vessels, then ranking them based on the angle of vessel bend and the local gradient in the neighborhood region. The algorithm was tested on a set of color fundus images and achieved a notching detection rate of 88.9%, a false alarm rate of 4.0%, and an overall accuracy of 95.4%.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种利用视网膜图像检测视杯缺口的新方法。视杯切迹是区分青光眼与正常眼的重要特征。本文提出的缺口检测方法包括四个步骤:圆盘和血管分割、关键区域血管弯曲检测、特征点选择和自动分类。血管弯曲检测的关键步骤是计算血管的局部曲率,然后根据血管弯曲角度和邻近区域的局部梯度对血管进行排序。该算法在一组彩色眼底图像上进行了测试,缺口检测率为88.9%,虚警率为4.0%,总体准确率为95.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic notch detection in retinal images
This paper presents a new method to detect notching in the optic cup using retinal images. Optic cup notching is an important feature in differentiating normal from glaucomatous eyes. The proposed notching detection method comprises four steps: disc and vessel segmentation, vessel bend detection at key regions, feature points selection and automatic classification. The key step of vessel bend detection involves computing the local curvature of the vessels, then ranking them based on the angle of vessel bend and the local gradient in the neighborhood region. The algorithm was tested on a set of color fundus images and achieved a notching detection rate of 88.9%, a false alarm rate of 4.0%, and an overall accuracy of 95.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信